Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

(CS)2 for Distributed Control Systems: A Better Approach to Developing and Maintaining ECU SW

2007-10-30
2007-01-4182
Electronic control units (ECUs) offer a modular, networked approach to real time machine control and diagnostics. Software embedded in these controllers offer agile and customizable solutions because of the intimate relationship with the ECU hardware and its inputs/outputs. In an idealistic view, embedded software should support the machine's life - 30 years or longer. Developing and maintaining software for these systems requires a strategy. A framework demonstrating common building blocks and long-term centralized support for ECUs on a machine is presented. This strategy reduces the detailed knowledge of the specific machine controls needed by ECU developers and provides the components and infrastructure key to extending the life and functionality of the ECU.
Technical Paper

0D-1D Coupling for an Integrated Fuel Economy Control Strategy for a Hybrid Electric Bus

2011-09-11
2011-24-0083
Hybrid electric vehicles (HEVs) are worldwide recognized as one of the best and most immediate opportunities to solve the problems of fuel consumption, pollutant emissions and fossil fuels depletion, thanks to the high reliability of engines and the high efficiencies of motors. Moreover, as transport policy is becoming day by day stricter all over the world, moving people or goods efficiently and cheaply is the goal that all the main automobile manufacturers are trying to reach. In this context, the municipalities are performing their own action plans for public transport and the efforts in realizing high efficiency hybrid electric buses, could be supported by the local policies. For these reasons, the authors intend to propose an efficient control strategy for a hybrid electric bus, with a series architecture for the power-train.
Technical Paper

100% LPG Long Haul Truck Conversion - Economy and Environmental Benefits

2012-09-24
2012-01-1983
Advanced Vehicle Technologies (AVT), a Ballarat Australia based company, has developed the World's first diesel to 100% LPG conversion for heavy haul trucks. There is no diesel required or utilized on the trucks. The engine is converted with minimal changes into a spark ignition engine with equivalent power and torque of the diesel. The patented technology is now deployed in 2 Mercedes Actros trucks. The power output in engine dynamometer testing exceeds that of the diesel (in excess of 370 kW power and 2700 Nm torque). In on-road application the power curve is matched to the diesel specifications to avoid potential downstream power-train stress. Testing at the Department of Transport Energy & Infrastructure, Regency Park, SA have shown the Euro 3 truck converted to LPG is between Euro 4 and Euro 5 NOx levels, CO2 levels 10% better than diesel on DT80 test and about even with diesel on CUEDC tests.
Technical Paper

1983 Ford Ranger Truck HSLA Steel Wheel

1982-02-01
820019
The demand for improved fuel economy in both cars and trucks has emphasized the need for lighter weight components. The application of high strength steel to wheels, both rim and disc, represents a significant opportunity for the automotive industry. This paper discusses the Ranger HSLA wheel program that achieved a 9.7 lbs. per vehicle weight savings relative to a plain carbon steel wheel of the same design. It describes the Ranger wheel specifications, the material selection, the metallurgical considerations of applying HSLA to wheels, and HSLA arc and flash butt welding. The Ranger wheel design and the development of the manufacturing process is discussed, including design modifications to accommodate the lighter gage. The results demonstrate that wheels can be successfully manufactured from low sulfur 60XK HSLA steel in a conventional high volume process (stamped disc and rolled rim) to meet all wheel performance requirements and achieve a significant weight reduction.
Technical Paper

1985 Light-Duty Truck Fuel Economy

1980-10-01
801387
This paper addresses fuel economy standards that can be obtained in 1985 for two-wheel drive LDT's using existing technology. To estimate the fuel economy, the fleet of LDT's is first segmented into market classes based on the concept of utility. The 1985 sales share of each class is predicted from an extrapolation of current trends as well as published sales forecasts. The 1985 fuel economy of each market class is projected using 1) MY '80 truck technology and fuel economy as a baseline, 2) a regression equation that allows an estimate of fuel economy based on the weight, drag, and engine displacement, and 3) the addition of fuel-efficient technologies. Estimates of weight reduction and new model introduction within each market class were derived from published manufacturers' plans. Based on this methodology, this analysis concludes that a fleet fuel economy in excess of 24/25 mpg is feasible for 1985 without/with the use of diesel engines.
Technical Paper

1998 Ranger Pulse Vacuum Hublock 4x4 System

1997-11-17
973237
This paper describes the design and features of the 1998 Ranger Pulse Vacuum Hublock (or PVH) 4x4 system. This part-time 4x4 system with wheel-end disconnect offers optimized fuel economy in a robust design that requires no regularly scheduled maintenance under normal driving conditions. The system allows silent 4WD shift on the fly at any speed or temperature and does not require reversing the vehicle to disengage the hublocks.
Technical Paper

2-Stroke Engine Options for Automotive Use: A Fundamental Comparison of Different Potential Scavenging Arrangements for Medium-Duty Truck Applications

2019-01-15
2019-01-0071
The work presented here seeks to compare different means of providing scavenging systems for an automotive 2-stroke engine. It follows on from previous work solely investigating uniflow scavenging systems, and aims to provide context for the results discovered there as well as to assess the benefits of a new scavenging system: the reverse-uniflow sleeve-valve. For the study the general performance of the engine was taken to be suitable to power a medium-duty truck, and all of the concepts discussed here were compared in terms of indicated fuel consumption for the same cylinder swept volume using a one-dimensional engine simulation package. In order to investigate the sleeve-valve designs layout drawings and analysis of the Rolls-Royce Crecy-type sleeve had to be undertaken.
Technical Paper

2000 University of Maryland FutureTruck Design Description

2001-03-05
2001-01-0681
The University of Maryland team converted a model year 2000 Chevrolet Suburban to an ethanol-fueled hybrid-electric vehicle (HEV) and tied for first place overall in the 2000 FutureTruck competition. Competition goals include a two-thirds reduction of greenhouse gas (GHG) emissions, a reduction of exhaust emissions to meet California ultra-low emissions vehicle (ULEV) Tier II standards, and an increase in fuel economy. These goals must be met without compromising the performance, amenities, safety, or ease of manufacture of the stock Suburban. The University of Maryland FutureTruck, Proteus, addresses the competition goals with a powertrain consisting of a General Motors 3.8-L V6 engine, a 75-kW (100 hp) SatCon electric motor, and a 336-V battery pack. Additionally, Proteus incorporates several emissions-reducing and energy-saving modifications; an advanced control strategy that is implemented through use of an on-board computer and an innovative hybrid-electric drive train.
Technical Paper

25W HID Headlamp - First Series Production in Hybrid Vehicle

2011-04-12
2011-01-0108
Due to the general requirements in the automotive industry to reduce the power consumption, fuel consumption rate and CO2 emission a new HID (High Intensity Discharge) bulb with only 25W is under development for front lighting systems. A first headlamp integrated in a hybrid vehicle is now launched as a first application in the market. The current regulation in ECE allows to get rid of the mandatory headlamp cleaning system and the automatic leveling requirement once the 25W HID bulb is applied. The reason for this is the objective luminous flux of the 25W HID bulb, which emits less than 2000 lm, a boundary defined in the regulation, where a headlamp cleaning and an automatic leveling is requested. That simplifies especially the integration in smaller vehicles and electric and hybrid vehicles. The paper describes the special design of the headlamp, the projector unit, the light performance, packaging advantages and future outlook of further applications in the near future.
Technical Paper

3-dimensional Simulation of Knock in a Heavy-Duty LPG Engine

2002-10-21
2002-01-2700
Three-dimensional transient simulation was performed and an autoignition model was implemented to predict knock occurrence and autoignition site in a heavy-duty liquefied petroleum gas (LPG) engine. A flame area evolution (FAE) premixed combustion model was applied to simulate flame propagation. Engine experiments using a single-cylinder research engine were performed to calibrate the reduced kinetic model and to verify the result of this modeling. A pressure transducer and a head-gasket type ion-probe circuit board were installed to detect knock occurrence, flame arrival angle, and autoignition site. The simulation result shows good agreement with engine experiments. It also provides much information about in-cylinder phenomena and some ways to reduce knocking tendency. This knock simulation can be used as a development tool of engine design.
Book

8th AVL International Commercial Powertrain Conference (2015)

2015-05-21
Organized in cooperation with SAE International, AVL’s International Commercial Powertrain Conference- ICPC, happens every two years. This event offers a unique opportunity for engineers to address the synergy effects and distinctive characteristics of commercial vehicles, agricultural tractors and non-road vehicles, and industrial machinery. In 2015, the 8th ICPC focused on alternative powertrain technologies and innovations improving operating efficiency. These proceedings include 17 papers focusing on the following topics: • Emissions reduction for heavy-duty vehicles • Alternative drivetrains • Autonomous driving • Connected driving • Efficiency • Alternative fuels • Product diversity • Challenges of cost vs. complexity
Journal Article

A Central Differential Gear Ratio Optimization of a 6×6 Articulated Dump Truck

2015-09-29
2015-01-2787
This paper starts with an analysis of design configurations of the drivelines with different power-dividing units (PDUs) of main dump truck manufacturing companies. As it follows from the analysis, improvements of articulated truck energy efficiency and reduction of fuel consumption by optimizing the power distribution to the drive wheels are still open issues. The problem is that a variety of operating and terrain conditions of dump trucks requires different wheel power distributions that cannot be provided by one set of PDUs employed in a truck. The central PDU in the transfer case was identified as the most important PDU among the five PDUs, which plays a crucial role in the power distribution between the front axle and the rear tandem of a 6×6 articulated dump truck. The paper formulates a constraint optimization problem to minimize the tire slippage power losses by optimizing the power distribution between the drive wheels.
Technical Paper

A Compact Cooling System (CCS™): The Key to Meet Future Demands in Heavy Truck Cooling

2001-05-14
2001-01-1709
To meet future needs for heavy truck cooling, a novel high performance radial compact cooling system (CCS) was developed. Measurements with a prototype system were conducted in a component wind tunnel and with truck-installed systems in a climatic vehicular wind tunnel. The CSS is compared to conventional axial and side-by-side systems. In comparison with a conventional axial system, the performance per unit volume of the CCS is 42% higher, the noise level is about 6 dB lower and the power consumption of the radial fan is 70% of the axial fan leading to significant savings in fuel consumption.
Technical Paper

A Comparative Analysis of WHR System in HD Engines Using Conventional Diesel Combustion and Partially-Premixed Combustion

2012-09-24
2012-01-1930
In the truck industry there is a continuous demand to increase the efficiency and to decrease the emissions. To acknowledge both these issues a waste heat recovery system (WHR) is combined with a partially premixed combustion (PPC) engine to deliver an efficient engine system. Over the past decades numerous attempts to increase the thermal efficiency of the diesel engine has been made. One such attempt is the PPC concept that has demonstrated potential for substantially increased thermal efficiency combined with much reduced emission levels. So far most work on increasing engine efficiency has been focused on improving the thermal efficiency of the engine while WHR, which has an excellent potential for another 1-5 % fuel consumption reduction, has not been researched that much yet. In this paper a WHR system using a Rankine cycle has been developed in a modeling environment using IPSEpro.
Technical Paper

A Comparative Study of Hydraulic Hybrid Systems for Class 6 Trucks

2013-04-08
2013-01-1472
In order to reduce fuel consumption, companies have been looking at hybridizing vehicles. So far, two main hybridization options have been considered: electric and hydraulic hybrids. Because of light duty vehicle operating conditions and the high energy density of batteries, electric hybrids are being widely used for cars. However, companies are still evaluating both hybridization options for medium and heavy duty vehicles. Trucks generally demand very large regenerative power and frequent stop-and-go. In that situation, hydraulic systems could offer an advantage over electric drive systems because the hydraulic motor and accumulator can handle high power with small volume capacity. This study compares the fuel displacement of class 6 trucks using a hydraulic system compared to conventional and hybrid electric vehicles. The paper will describe the component technology and sizes of each powertrain as well as their overall vehicle level control strategies.
Technical Paper

A Comparison Between Micromachined Piezoresistive and Capacitive Pressure Sensors

1997-11-17
973241
Hundreds of millions of micromachined, piezoresistive Manifold Absolute Pressure (MAP) sensors have been produced to reduce pollution and improve fuel efficiency in engine control systems. Other vehicle applications for micromachined pressure sensors include monitoring turbo pressure, barometric pressure, fuel tank leakage, fuel rail pressure and tire pressure. Exhaust gas recirculation and even door compression for side impact detection are employing micromachined silicon pressure sensors. Piezoresistive pressure sensors have dominated the automotive market to date. Practical micromachined capacitive pressure sensors have recently been developed and could replace the piezoresistive sensor in many applications. This paper will examine the advantages of both pressure sensing technologies, and discuss applications that an inexpensive capacitive pressure sensor will open up.
Journal Article

A Comparison of Full Scale Aft Cavity Drag Reduction Concepts With Equivalent Wind Tunnel Test Results

2013-09-24
2013-01-2429
Comparison studies have been conducted on a 1:16th scale model and a full scale tractor trailer of a variety of sealed aft cavity devices as a means to develop or enhance commercial drag reduction technology for class 8 vehicles. Various base cavity geometries with pressure taps were created for the scale model. The studies confirmed that length has an important effect on performance. The interaction of the boat-tailed aft cavity with other drag reduction devices, specifically side skirts, was investigated with results showing no discernable drag performance interaction between them. Overall, the experiments show that a boat-tailed aft cavity can reduce the drag up to 13%. Full-scale tests of a commercially derived product based on these scale tests were also completed using SAE Type II testing procedures. Full-scale tests indicated a fuel savings of over 6.5%.
Technical Paper

A Complex System for the Automatic Control of a Farm Tractor

1991-09-01
911753
On-board vehicle electronics have matured and become a practical replacement for the many menial tasks required of a tractor operator. Electronic control systems allow more application flexibility and enhance performance more than a human operator could ever be expected to accomplish. This paper covers the possibilities for a fully automated tractor that optimally controls engine speed, transmission gears, fuel consumption and attached implement. The paper is written around a Soviet built four wheel drive tractor. The system described has been built and tested with very positive results.
Technical Paper

A Compressed Natural Gas Mass Flow Driven Heavy Duty Electronic Engine Management System

1993-08-01
931822
This paper describes the conversion of a stationary spark ignition engine to a heavy duty (HD) natural gas engine suitable for transportation applications, in response to the new urban truck and bus legislation of 1994 and 1998. The approach to the fuel and ignition control system is to use a microprocessor controlled engine management system based on inputs from combustion air and natural gas mass flow sensors. As the emission control system is also based on stoichiometric three way catalyst technology, it is felt that the control approach is very robust. The engine and control system were first mounted on a HD dynamometer for the development work where engine control parameters were calibrated. In addition steady state emission data were collected and estimates of the HD transient emission levels were obtained.
X