Refine Your Search

Topic

Author

Affiliation

Search Results

Event

2024-04-23
Event

2024-04-23
Event

2024-04-23
Event

2024-04-23
Event

2024-04-23
Event

2024-04-23
Event

2024-04-23
Event

2024-04-23
Event

2024-04-23
Technical Paper

100% LPG Long Haul Truck Conversion - Economy and Environmental Benefits

2012-09-24
2012-01-1983
Advanced Vehicle Technologies (AVT), a Ballarat Australia based company, has developed the World's first diesel to 100% LPG conversion for heavy haul trucks. There is no diesel required or utilized on the trucks. The engine is converted with minimal changes into a spark ignition engine with equivalent power and torque of the diesel. The patented technology is now deployed in 2 Mercedes Actros trucks. The power output in engine dynamometer testing exceeds that of the diesel (in excess of 370 kW power and 2700 Nm torque). In on-road application the power curve is matched to the diesel specifications to avoid potential downstream power-train stress. Testing at the Department of Transport Energy & Infrastructure, Regency Park, SA have shown the Euro 3 truck converted to LPG is between Euro 4 and Euro 5 NOx levels, CO2 levels 10% better than diesel on DT80 test and about even with diesel on CUEDC tests.
Technical Paper

1990 Clean Air Act Impacts on Finishing Technology and Operations in the Medium and Heavy Duty Truck & Bus Industry

1995-11-01
952662
The Clean Air Act Amendments of 1990 have brought about wholesale changes in the mandated requirements for the EPA and states to bring clean air to the country. Of particular interest to the light and heavy duty truck and bus industry are the requirements for VOC reductions in Title I, the hazardous pollutant reductions requirements in Title III, and the new permitting scheme required under Title V of the Act. The inter-relationship of lower VOC coatings, hazardous pollutant reduction, and permitting requirements will be presented. Since the Act does not fully mesh these requirements, the pathways that coating suppliers and coating application facilities can use to come into compliance will be explored. Specific VOC content of conforming coatings will be presented, how they will impact application processes, and how hazardous air pollutant reductions can be achieved is explored.
Technical Paper

2000 University of Maryland FutureTruck Design Description

2001-03-05
2001-01-0681
The University of Maryland team converted a model year 2000 Chevrolet Suburban to an ethanol-fueled hybrid-electric vehicle (HEV) and tied for first place overall in the 2000 FutureTruck competition. Competition goals include a two-thirds reduction of greenhouse gas (GHG) emissions, a reduction of exhaust emissions to meet California ultra-low emissions vehicle (ULEV) Tier II standards, and an increase in fuel economy. These goals must be met without compromising the performance, amenities, safety, or ease of manufacture of the stock Suburban. The University of Maryland FutureTruck, Proteus, addresses the competition goals with a powertrain consisting of a General Motors 3.8-L V6 engine, a 75-kW (100 hp) SatCon electric motor, and a 336-V battery pack. Additionally, Proteus incorporates several emissions-reducing and energy-saving modifications; an advanced control strategy that is implemented through use of an on-board computer and an innovative hybrid-electric drive train.

2022 Thermal Management Systems Symposium

2024-04-23
Thermal Management Systems Symposium industry discusses latest regulatory impacts, applications to reduce engine emissions, conserve energy, reduce noise, improve the cabin environment, increase overall vehicle performance passenger, commercial vehicle industry.
Event

2024 NAIPC

2024-04-23
NAIPC reflects modern developments in alternative, electrified propulsion systems, high tech gasoline, diesel ICEs, hydrogen fuel cells, battery electric systems, variable transmissions.
Event

2024 On-Board Diagnostics Symposium-Europe

2024-04-23
The 2024 On-Board Diagnostics Symposium-Europe (OBD-EU) continues to serve as the industry’s trusted event, providing regulatory and standards updates geared towards meeting European Commission and the California Air Resources Board ground vehicle emissions regulations.
Technical Paper

24SIAT-0900: Heavy Duty Vehicle Aftertreatment Technologies for the Future: What May Be Required at BSVII?

2024-01-16
2024-26-0149
This paper describes the after-treatment technology that could be used to meet a future BS-VII standard, considering close-coupled SCR (cc-SCR) to help start NOx conversion earlier. Both active (Cu/Fe-SCR based) and passive (V-SCR based) systems have the potential to meet emission limits. V-SCR may be considered in the rear position because V-SCR shows a fast response with very low N2O formation. Next-gen V-SCR technology shows significantly improved performance and durability closer to Cu-SCR. The steady-state NOx conversions over Next-Gen V-SCR were better than BS-VI V-SCR in both fresh and aged-580°C/100h conditions. High durability was also observed after engine aging of 1000h (WHTC + high load). Another big challenge in BS VII could be the PN10 requirement. With enhanced filtration coating (EFC) technology, PN emissions drop drastically in comparison to Euro VI reference without EFC to meet a future BS VII.
Technical Paper

25W HID Headlamp - First Series Production in Hybrid Vehicle

2011-04-12
2011-01-0108
Due to the general requirements in the automotive industry to reduce the power consumption, fuel consumption rate and CO2 emission a new HID (High Intensity Discharge) bulb with only 25W is under development for front lighting systems. A first headlamp integrated in a hybrid vehicle is now launched as a first application in the market. The current regulation in ECE allows to get rid of the mandatory headlamp cleaning system and the automatic leveling requirement once the 25W HID bulb is applied. The reason for this is the objective luminous flux of the 25W HID bulb, which emits less than 2000 lm, a boundary defined in the regulation, where a headlamp cleaning and an automatic leveling is requested. That simplifies especially the integration in smaller vehicles and electric and hybrid vehicles. The paper describes the special design of the headlamp, the projector unit, the light performance, packaging advantages and future outlook of further applications in the near future.
Technical Paper

3-D Modeling of Diesel Engine Intake Flow, Combustion and Emissions

1991-09-01
911789
Manufacturers of heavy-duty diesel engines are facing increasingly stringent, emission standards. These standards have motivated new research efforts towards improving the performance of diesel engines. The objective of the present program is to develop a comprehensive analytical model of the diesel combustion process that can be used to explore the influence of design changes. This will enable industry to predict the effect of these changes on engine performance and emissions. A major benefit of the successful implementation of such models is that engine development time and costs would be reduced through their use. The computer model is based on the three-dimensional KIVA-II code, with state-of-the-art submodels for spray atomization, drop breakup / coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, and soot and radiation.
Technical Paper

48 V Diesel Hybrid - Advanced Powertrain Solution for Meeting Future Indian BS 6 Emission and CO2 Legislations

2019-01-09
2019-26-0151
The legislations on emission reduction is getting stringent everywhere in the world. India is following the same trend, with Government of India (GOI) declaring the nationwide implementation of BS 6 legislation by April 2020 and Real Driving Emission (RDE) Cycle relevant legislation by 2023. Additionally GOI is focusing on reduction of CO2 emissions by introduction of stringent fleet CO2 targets through CAFE regulation, making it mandatory for vehicle manufacturers to simultaneously work on gaseous emissions and CO2 emissions. Simultaneous NOx emission reduction and CO2 reduction measures are divergent in nature, but with a 48 V Diesel hybrid, this goal can be achieved. The study presented here involves arriving at the right future hybrid-powertrain layout for a Sports Utility Vehicle (SUV) in the Indian scenario to meet the future BS 6 and CAFÉ legislations. Diesel engines dominate the current LCV and SUV segments in India and the same trend can be expected to continue in future.
Journal Article

48V Exhaust Gas Recirculation Pump: Reducing Carbon Dioxide with High-Efficiency Turbochargers without Increasing Engine-Out NOx

2021-08-23
Abstract Regulations limiting GreenHouse Gases (GHG) from Heavy-Duty (HD) commercial vehicles in the United States (US) and European Union will phase in between the 2024 and 2030 model years. These mandates require efficiency improvements at both the engine and vehicle levels, with the most stringent reductions required in the heaviest vehicles used for long-haul applications. At the same time, a 90% reduction in oxides of nitrogen (NOx) will be required as part of new regulations from the California Air Resources Board. Any technologies applied to improve engine efficiency must therefore not come at the expense of increased NOx emissions. Research into advanced engine architectures and components has identified improved turbomachine efficiency as one of the largest potential contributors to engine efficiency improvement. However this comes at the cost of a reduced capability to drive high-pressure Exhaust Gas Recirculation (EGR).
X