Refine Your Search


Search Results

Technical Paper

A Military Space Plane Candidate

This paper presents a Military Space Plane design concept. While the current military space plane activity is focused on rocket-powered concepts, the concept presented here is powered by a rocket-based combined cycle engine that uses both rocket and air-breathing engine cycles. The design concept is the reference SSTO design concept used in the NASA HRST ANSER study. The reference concept is a derivative of the NASA air-breathing Access to Space study SSTO design concept. The Access to Space air-breathing vehicle's combined cycle engine was replaced by the Aerojet rocket-based combined cycle engine. The orbital performance capability of the reference design concept is presented for 100 n mi., polar, and 225 n mi., 51 deg. orbits. The sensitivity of GTOW to payload and margin is also presented.
Training / Education

A Primer on Regulations and Liability Considerations for HAV’s

Potential regulations surrounding the development, testing and commercial launch of Highly Automated Vehicles and possible liability exposure for the manufacturing and operation of Highly Automated Vehicles are fluid and changing areas, that will continue to evolve over the next several years. The first half of this course reviews where regulations are at the state and federal levels, what actions are currently under consideration, how current regulations will need to change to accommodate HAV’s, and how and when new regulations might be implemented. The second half covers both common law and strict liability and how it may apply to HAV’s.

Air Cycle Air Conditioning Systems for Air Vehicles

This SAE Aerospace Standard (AS) defines the requirements for air cycle air conditioning systems used on military air vehicles for cooling, heating, ventilation, and moisture and contamination control. General recommendations for an air conditioning system, which may include an air cycle system as a cooling source, are included in MIL-E-18927E and JSSG-2009. Air cycle air conditioning systems include those components which condition high temperature and high pressure air for delivery to occupied and equipment compartments and to electrical and electronic equipment. This document is applicable to open and closed loop air cycle systems. Definitions are contained in Section 5 of this document.

Automatic Target Recognition, Third Edition

This third edition of Automatic Target Recognition provides a roadmap for breakthrough ATR designs―with increased intelligence, performance, and autonomy. Clear distinctions are made between military problems and comparable commercial deep-learning problems. These considerations need to be understood by ATR engineers working in the defense industry as well as by their government customers. A reference design is provided for a next-generation ATR that can continuously learn from and adapt to its environment. The convergence of diverse forms of data on a single platform supports new capabilities and improved performance. This third edition broadens the notion of ATR to multisensor fusion. Radical continuous-learning ATR architectures, better integration of data sources, well-packaged sensors, and low-power teraflop chips will enable transformative military designs.
Technical Paper

Challenging Power Density Requirements for Future Fighter APUs

Future fighters will require more compact, lighter weight, small gas turbine auxiliary power units (APUs) capable of faster starting, and operation, up to altitudes of 50,000 ft. The US Air Force is currently supporting an Advanced Components Auxiliary Power Unit (ACAPU) research program to demonstrate the technologies that will be required to accomplish projected secondary power requirements for these advanced fighters. The requirements of the ACAPU Program represent a challenging task requiring significant technical advancements over the current state-of-the-art, prominent among which are: Small high heat release high altitude airbreathing combustors. High temperature monolithic ceramic and metallic small turbines. Capability to operate, and transition from non-airbreathing to airbreathing modes. This paper discusses these challenging requirements and establishes technology paths to match and exceed the required goals.
Journal Article

Combined Battery Design Optimization and Energy Management of a Series Hybrid Military Truck

Abstract This article investigates the fuel savings potential of a series hybrid military truck using a simultaneous battery pack design and powertrain supervisory control optimization algorithm. The design optimization refers to the sizing of the lithium-ion battery pack in the hybrid configuration. The powertrain supervisory control optimization determines the most efficient way to split the power demand between the battery pack and the engine. Despite the available design and control optimization techniques, a generalized mathematical formulation and solution approach for combined design and control optimization is still missing in the literature. This article intends to fill that void by proposing a unified framework to simultaneously optimize both the battery pack size and power split control sequence. This is achieved through a combination of genetic algorithm (GA) and Pontryagin’s minimum principle (PMP) where the design parameters are integrated into the Hamiltonian function.
Technical Paper

Computing Remaining Fatigue Life Under Incrementally Updated Loading Histories

After manufacture, every military vehicle experiences a unique history of dynamic loads, depending on loads carried, missions completed, etc. Damage accumulates in vehicle structures and components accordingly, leading eventually to failures that can be difficult to anticipate, and to unpredictable consequences for mission objectives. The advent of simulation-based fatigue life prediction tools opens a path to Digital Twin based solutions for tracking damage, and for gaining control over vehicle reliability. An incremental damage updating feature has now been implemented in the Endurica CL fatigue solver with the aim of supporting such applications for elastomer components. The incremental updating feature is demonstrated via the example of a simple transmission mount component. The damage state of the mount is computed as it progresses towards failure under a series of typical loading histories.
Technical Paper

Design, Synthesis and Analysis of Loader Bucket, Boom and Linkages for Amphibious Infantry Combat Vehicle

Currently, for various military activities such as construction of bridges, digging trenches, construction of roads and clearing the area during landslides, separate unit of bulldozer for dozing operation and loader for loading operation is required. But the need is to develop a single unit which could perform both of these operations efficiently and simultaneously. The paper discusses about the development of dozer bucket mechanism as a single unit to perform dozing and loading operation and connected to the amphibious infantry combat vehicle. To develop the dozer bucket mechanism synthesis of mechanism (Linkages and Boom) has carried out and care has taken to fulfill the above stated functional requirement and satisfy the geometrical constraints. The synthesis of mechanism is done with the help of ‘CATIA’ software packages. The force calculation on various joints at the different position of mechanism has evaluated with the help of ’ADAMS’ software.
Technical Paper

Development of the CAVEMAN Human Body Model: Validation of Lower Extremity Sub-Injurious Response to Vertical Accelerative Loading

Improving injury prediction accuracy and fidelity for mounted Warfighters has become an area of focus for the U.S. military in response to improvised explosive device (IED) use in both Iraq and Afghanistan. Although the Hybrid III anthropomorphic test device (ATD) has historically been used for crew injury analysis, it is only capable of predicting a few select skeletal injuries. The Computational Anthropomorphic Virtual Experiment Man (CAVEMAN) human body model is being developed to expand the injury analysis capability to both skeletal and soft tissues. The CAVEMAN model is built upon the Zygote 50th percentile male human CAD model and uses a finite element modeling approach developed for high performance computing (HPC). The lower extremity subset of the CAVEMAN human body model presented herein includes: 28 bones, 26 muscles, 40 ligaments, fascia, cartilage and skin.
Technical Paper

Enhanced HUD Symbology Associated with Recovery from Unusual Attitudes

The present study examined the degree of spatial awareness obtained using what has been called an Augie Arrow, enabled so that it could be displayed as either a “nearest horizon pointer” (NH) or an “up arrow” (UP) indicator. Another issue investigated concerned the usefulness of analog dials vice digital readouts of airspeed and altitude as an aid to recovery. During simulated flight, twelve subjects were required to recover from six unusual attitudes employing one of four HUD formats: (1) Standard HUD, (2) Augie Arrow, (3) Analog Dials, and (4) Augie Arrow with Analog Dials. Results revealed that the Augie Arrow produced the most rapid recovery time. The Augie Arrow configuration was optimal at the most severe unusual attitudes, especially for the NH mechanization. The Dials only HUD was not particularly helpful in recovery, and the Arrow with Dials HUD was rated as a significant clutter problem.
Technical Paper

Experimental Stress/Strain Analysis of a Standardized Sensor Platform for a C-130 Aircraft

Project Oculus is an in-flight deployable mechanical arm/pod system that will accommodate 500 pounds of sensor payload, developed for a C-130 military aircraft. The system is designed for use in counter narco-terrorism and surveillance applications by the Department of Defense and the National Guard [1]. A prototype of the system has been built and is in the testing/analysis phase. The purpose of this study was to analyze the actual stresses and strains in the critical areas found using previous Finite Element (FE) simulations and to ensure that acceptable safety requirements have been met. The system components tested will be redesigned, tested, and reconstructed in the case of unacceptable safety factors or if more reliable methods can be implemented. The system was built to be deployed and retracted in flight, to avoid causing any problems in take off and landing.
Training / Education

Ferrous Metals Bundle: Steel and Cast Iron

Ferrous metals contain iron and are prized for their tensile strength and durability.  Most are magnetic and contain a high carbon content which generally makes them, with the exception of wrought iron and stainless steel, vulnerable to rust. The following seven on-demand courses are included in the Ferrous Materials Bundle: Steel and Cast Iron.  Each course is approximately one-hour in duration. See Topics/Outline for additional details.
Technical Paper

Future Military APU Requirements

Future tactical aircraft will have increased capabilities that will place greater demands on their secondary power systems. Added capabilities such as low observability or internal weapons storage are being planned for without significantly increasing the aircraft's size and weight. The power system must therefore have reduced volume, weight, and complexity, while also being more reliable and maintainable. The auxiliary power unit (APU) is a critical component that must be improved to upgrade the capabilities of the power system. Increasing the APU's power density is one important way for reducing the power system's size and weight. Increased power density, however, will require a power unit operating with higher gas generator temperatures, so this condition will be the major challenge for new APU designs.
Technical Paper

Guiding Framework for Feasibility Evaluation of Localised Production and Drop in Blending of Aviation Turbine Fuel with Bio Derivatives for Non-civilian Air Bases

The potential for small scale local production of Bio fuel derivatives and their partial blending with aviation turbine fuel in non-civilian bases has been investigated. A feasibility study on technical readiness levels for process viability is presented in the paper. Demand side analysis for various blend mixes and corresponding requirement for production facilities and land area requirements are performed. Sustainable production and blending operations are the basis for selection of key performance indicators for the air base. Guiding framework and readiness evaluation processes are delineated for the base. Qualitative inference is combined with quantitative scoring system within the framework.
Training / Education

High Temperature Materials Bundle

Metals and alloys all have different melting ranges depending on their chemistry. High temperature metals are much harder at room temperature, have exceptionally high melting points (usually above 2000 degree Celsius), and are resistant to wear, corrosion and deformation. The following five on-demand courses are included in the High Temperature Materials bundle.  Each course is approximately one-hour in duration. See Topics/Outline for additional details.
Technical Paper

Human Foot-Ankle Injuries and Associated Risk Curves from Under Body Blast Loading Conditions

Under body blast (UBB) loading to military transport vehicles is known to cause foot-ankle fractures to occupants due to energy transfer from the vehicle floor to the feet of the soldier. The soldier posture, the proximity of the event with respect to the soldier, the personal protective equipment (PPE) and age/sex of the soldier are some variables that can influence injury severity and injury patterns. Recently conducted experiments to simulate the loading environment to the human foot/ankle in UBB events (~5ms rise time) with variables such as posture, age and PPE were used for the current study. The objective of this study was to determine statistically if these variables affected the primary injury predictors, and develop injury risk curves. Fifty below-knee post mortem human surrogate (PMHS) legs were used for statistical analysis. Injuries to specimens involved isolated and multiple fractures of varying severity.
Technical Paper

Implementation of Active & Passive Safety for Heavy Article Tilter and Positioner (HATP)

Mobile heavy article tilter and positioner (HATP) is special purpose vehicle designed to level, articulate and positioning of very heavy load within the accuracy of arc minutes and in a stipulated time in fully auto mode. HATP system uses sophisticated electronic controller system to carry out required task in auto mode. This electronic controller system comprises of various types of electronic hardware, software, sensors and actuators. As this system is dealing with heavy load, any failure in any of subsystem of HATP can result into catastrophe. Therefore active and passive safety measure at various levels must be incorporated into system which firstly prevents the failure and reduce the effect of failure. The safety system for HATP system has been divided in three major levels: 1. Access level safety 2. Operational safety 3. Preventive safety. All three levels of safety is incorporated at appropriate subsystem based on Risk Priority Number (RPN) and failure mode effect analysis.
Technical Paper

Influence of the distances between the axles in the vertical dynamics of a military vehicle equipped with magnetorheological dampers

While traveling on any type of ground, the damper of a vehicle has the critical task of attenuating the vibrations generated by its irregularities, to promote safety, stability, and comfort to the occupants. To reach that goal, several passive dampers projects are optimized to embrace a bigger frequency range, but, by its limitations, many studies in semiactive and active dampers stands out by promoting better control of the vehicle dynamics behavior. In the case of military vehicles, which usually have more significant dimensions than the common ones and can run on rough or unpaved lands, the use of semi-active or active dampers reveals itself as a promising alternative. Motivated by that, the present study performs an analysis of the vertical dynamics of a wheeled military vehicle with four axles, using magnetorheological dampers. This study is made using a configuration of the distances between the axles of the vehicle, which is chosen from five available options.