Refine Your Search




Search Results

Viewing 1 to 20 of 17534
Technical Paper

100-kWe Lunar/Mars Surface Power Utilizing the SP-100 Reactor with Dynamic Conversion

An integration study was performed coupling an SP-100 reactor with either a Brayton or Stirling power conversion subsystem. A power level of 100 kWe was selected for the study. The power system was to be compatible with both the lunar and Mars surface environment and require no site preparation. In addition, the reactor was to have integral shielding and be completely self-contained, including its own auxiliary power for start-up. Initial reliability studies were performed to determine power conversion redundancy and engine module size. Previous studies were used to select the power conversion optimum operating conditions (ratio of hot-side temperature to cold-side temperature). Results of the study indicated that either the Brayton or Stirling power conversion subsystems could be integrated with the SP-100 reactor for either a lunar or Mars surface power application.
Technical Paper

10PC20 Swash Plate Type Variable Displacement Compressor for Automotive Air Conditioners

Up to now, various compressor models for automotive air conditioners have been manufactured to answer the needs of car manufacturers for fuel economy and quietness. The 10PC20 compressor, developed for automotive air conditioners, is the world's first swash plate type compressor having a continuously variable displacement mechanism. The 10PC20 is aimed at realizing a large displacement compressor with a continuously variable displacement mechanism, which has not been achieved until today. To achieve this goal, the 10PC20 design is based on the swash plate type compressor, consisting of double-headed pistons, which is adaptable to a large displacement and has excellent rotating balance and durability. The 10PC20 changes its displacement continuously by changing the inclination of the swash plate (swash plate angle) continuously. (See photo. 1 and 2) The 10PC20 adopts two variable displacement principles.
Technical Paper

12-Volt Vacuum Fluorescent Display Drive Circuitry for Electronically Tuned Radios

The trend towards battery voltage vacuum fluorescent displays continues the technological advances in design and construction of VFD's, as they are applied to the automobile environment. With the ever increasing use of electronic displays for electronically tuned radios (ETR's), compact disc (CD) players, and other entertainment systems, advances in battery voltage displays and their associated drive circuitry have become a necessity. With the inherent advantages of low voltage operation and high information density, VFD's will continue to dominate the automobile audio markets. This paper will discuss battery voltage displays, the basic circuitry necessary to operate a vacuum fluorescent display, and comment on the “off the shelf” controller and driver circuitry available.
Technical Paper

120VAC Power Inverters

Inverters are solid state devices which change DC to 120VAC electricity. They are sufficiently rugged and reliable to make them practical for use on utility vehicles for operating thumpers, tools, lights and induction motor loads. The SCR type rather than the transistor type inverter is generally required for inductive and reactive loads. Static inverters operate from battery input. They provide power without running an engine, but are limited by battery capacity so work best in intermittent load applications. Dynamic inverters operate from alternator input and will handle continuous loads to 7200 watts with truck engine running.
Technical Paper

1500 W Deployable Radiator with Loop Heat Pipe

Two-phase capillary loops are being extensively studied as heat collection and rejection systems for space applications as they appear to satisfy several requirements like low weight, low volume, temperature control under variable heat loads and/or heat sink, operation under on ground and micro gravity conditions, simplicity of mounting and heat transfer through tortuous paths. In 1998–2000 Alenia defined and Lavochkin Association developed the Deployable Radiator on the base of honeycomb panels, axial grooved heat pipes and Loop Heat Pipe. It was designed for on-ground testing.
Technical Paper

18000 Series Power Shift Transmission Development

This paper describes the concept, design, and options of a new power shift transmission family for industrial equipment in the 50-100 hp range. The converter, clutch, and gearing arrangements provide the basis for various transmission configurations with both a drop and straight through output. The designs allow multiple usage of components within a transmission and between different sizes of transmissions. The various gearing, bearing, and clutch designs are based on proved experience factors, and as such will provide a new reliable family of transmissions.
Technical Paper

1962 passenger-car engineering trends

The phenomenal success of the small car is leading to many engineering changes in the automobile industry. It has brought increased emphasis on weight reduction on both small and full-size cars. Improving reliability and designing to eliminate grease fittings have also become important objectives.
Technical Paper

1967 Guide to Governmental Assurance Documentation: In the Areas of Quality, Reliability, Maintainability, Value Engineering, Safety, Human Factors, and Zero Defects

Governmental assurance documentation bibliography updated; new tabulation effective as of April 1, 1967. Latest revision indicated in all instances, but no attempt was made to list supplements or amendments. Department of Defense Index of Specifications and Standards (DODISS) published annually in three parts (alphabetic, numerical, and listing of Federal Supply Classification following unclassified documents.
Technical Paper

1987 Thunderbird Turbo Coupe Programmed Ride Control (PRC) Suspension

This paper describes Programmed Ride Control (PRC), the automatic adjustable shock absorber system designed and patented by Ford Motor Company. The system utilizes low shock absorber damping under normal driving conditions to provide soft boulevard ride, automatically switching to firm damping when required for improved handling. The system's microprocessor control module “learns” where the straight ahead steering wheel position is, allowing the system to respond to absolute steering wheel angle. A closed loop control strategy is used to improve system reliability and to notify the driver in the event of a system malfunction. Fast acting rotary solenoids control the damping rate of the shock absorbers.
Technical Paper

1990-The Engineer and TQM

This paper will identify the role of the engineer in the Total Quality Management movement. In the latter 1980's quality and reliability were identified as being a result of good business practices, rather than only being effected by manufacturing and design systems. In the past, engineers were given total design responsibility with little or no control once the design left their hands. Product cost analysis recently identified approximately 65% of product cost comes from areas which the engineer cannot control. This paper will show how the skills of the engineer are being integrated into the total business environment through a structured planning system, resulting in products and services with customer focus. Quality and reliability in the 1990's will be a result of this well defined and applied business system.
Technical Paper

1997 UTEP LPP-FI Propane Challenge Vehicle

As part of the 1997 Propane Vehicle Challenge, a team of twelve UTEP students converted a 1996 Dodge Grand Caravan with a 3.3 L V6 engine to dedicated Liquefied Petroleum Gas (LPG) operation according to the 1997 Propane Vehicle Challenge (PVC) competition rules (16). The 1997 UTEP team developed an LPG liquid phase port fuel injection (LPP-FI) system for the minivan. The UTEP design strategy combines simplicity and sound engineering practices with the effective use of heat resistant materials to maintain the LPG in the liquid phase at temperatures encountered in the fuel delivery system. The team identified two options for fuel storage with in-tank fuel pumps. The competition vehicle incorporates a five-manifold eight inch diameter Sleegers Engineering LPG tank fitted with a Walbro LPTS in-tank pump system, providing a calculated range of 310 city miles and 438 highway miles.
Technical Paper

1D Engine Simulation Approach for Optimizing Engine and Exhaust Aftertreatment Thermal Management for Passenger Car Diesel Engines by Means of Variable Valve Train (VVT) Applications

Using a holistic 1D engine simulation approach for the modelling of full-transient engine operation, allows analyzing future engine concepts, including its exhaust gas aftertreatment technology, early in the development process. Thus, this approach enables the investigation of both important fields - the thermodynamic engine process and the aftertreatment system, together with their interaction in a single simulation environment. Regarding the aftertreatment system, the kinetic reaction behavior of state-of-the-art and advanced components, such as Diesel Oxidation Catalysts (DOC) or Selective Catalytic Reduction Soot Filters (SCRF), is being modelled. Furthermore, the authors present the use of the 1D engine and exhaust gas aftertreatment model on use cases of variable valve train (VVT) applications on passenger car (PC) diesel engines.
Technical Paper

1D Fluid Dynamic Modeling of Unsteady Reacting Flows in the Exhaust System with Catalytic Converter for S.I. Engines

This paper deals with some recent advances in the field of 1D fluid dynamic modeling of unsteady reacting flows in complex s.i. engine pipe-systems, involving a catalytic converter. In particular, a numerical simulation code has been developed to allow the simulation of chemical reactions occurring in the catalyst, in order to predict the chemical specie concentration in the exhaust gas from the cylinder to the tailpipe outlet, passing through the catalytic converter. The composition of the exhaust gas, discharged by the cylinder and then flowing towards the converter, is calculated by means of a thermodynamic two-zone combustion model, including emission sub-models. The catalytic converter can be simulated by means of a 1D fluid dynamic and chemical approach, considering the laminar flow in each tiny channel of the substrate.
Technical Paper

1D Modeling of AC Refrigerant Loop and Vehicle Cabin to Simulate Soak and Cool Down

Simulation has become an integral part in the design and development of an automotive air-conditioning (AC) system. Simulation is widely used for both system level and component level analyses and are carried out with one-dimensional (1D) and Computational Fluid Dynamics (CFD) tools. This paper describes a 1D approach to model refrigerant loop and vehicle cabin to simulate the soak and cool down analysis. Soak and cool down is one of the important tests that is carried out to test the performance of a heating, ventilation and air-conditioning (HVAC) system of a vehicle. Ability to simulate this cool down cycle is thus very useful. 1D modeling is done for the two-phase flow through the refrigerant loop and air flow across the heat exchangers and cabin with the commercial software AMESim. The model is able to predict refrigerant pressure and temperature inside the loop at different points in the cycle.
Technical Paper

1D Modeling of Expansion tank Flow

An expansion tank is an integral part of an automotive engine cooling system. The primary function of the expansion tank is to allow the thermal expansion of the coolant. The expansion tank will be referred as hot bottle in this paper. In the System level modeling of the engine internal flow, it is imperative to accurately model and characterize the components in the system. It is often challenging to define the hot bottle accurately with limited parameters in the 1D modeling. Currently it is very difficult to optimize the system by testing. Since testing consumes a lot of time and changes in development stage. If the hot bottle component is not defined properly in the system network, then the system flow balancing cannot be predicted accurately. In this paper, the approach of creating a 1D modeling tool for hot bottle flow prediction is discussed and the simulation results are compared with the physical test data.

1D Simulation and Experimental Analysis of a Turbocharger Compressor for Automotive Engines under Unsteady Flow Conditions

Zero-dimensional, one-dimensional, and quasi-dimensional models for simulation of SI and CI engines with respect to: engine breathing and boosting; SI combustion and emissions; CI combustion and emissions; fundamentals of engine thermodynamics; thermal management; mechanical and lubrication systems; system level models for controls; system level models for vehicle fuel economy and emissions predictions. Presenter Fabio Bozza, Universita di Napoli
Technical Paper

1D Thermo-Fluid Dynamic Modelling of a S.I. Engine Exhaust System for the Prediction of Warm-Up and Emission Conversion during a NEDC Cycle

This work describes an experimental and numerical investigation of the thermal transient of i.c. engine exhaust systems. A prototype of exhaust system has been investigated during a NEDC cycle in two different configurations. Firstly an uncoated catalyst has been adopted to consider only the effect of the gas-wall heat transfer. The measurements have been repeated on the same exhaust system equipped with a coated catalyst to point out the contribution of the chemical reactions to the thermal transient of the system. The measured values have been compared to the predicted results carried out with a 1D thermo fluid dynamic code, developed in-house to account for the thermal transient of the system and the chemical reactions occurring in the catalyst.
Technical Paper

1D Transient Thermal Model of an Automotive Electric Engine Cooling Fan Motor

For the thermal management of an automobile, the induced airflow becomes necessary to enable the sufficient heat transfer with ambient. In this way, the components work within the designed temperature limit. It is the engine-cooling fan that enables the induced airflow. There are two types of engine-cooling fan, one that is driven by engine itself and the other one is electrically driven. Due to ease in handling, reduced power consumption, improved emission condition, electrically operated fan is becoming increasingly popular compared to engine driven fan. The prime mover for electric engine cooling fan is DC motor. Malfunction of DC motor due to overheating will lead to engine over heat, Poor HVAC performance, overheating of other critical components in engine bay. Based upon the real world driving condition, 1D transient thermal model of engine cooling fan motor is developed. This transient model is able to predict the temperature of rotor and casing with and without holes.