Refine Your Search

Topic

Search Results

Standard

AEROSPACE FUEL SYSTEM SPECIFICATIONS AND STANDARDS

1976-03-01
HISTORICAL
AIR1408
This report lists military and industry specifications and standards which are commonly used in aerospace gas turbine fuel systems. It is intended as a supplement to specifications MIL-F-3863, MIL-F-17874 and MIL-F-8615. Revisions and amendments which are current for these specifications and standards are not listed.
Standard

AIRCRAFT FLEXIBLE TANKS GENERAL DESIGN AND INSTALLATION RECOMMENDATIONS

1994-09-01
HISTORICAL
AIR1664
This Aerospace Information Report (AIR) includes general information about the various types and styles of flexible tanks and the tank-mounted fittings that adapt the tank to the surrounding structure and fluid-system plumbing. Recommendations are given relative to the dimensional layout of the tank when these recommendations serve to avoid tank fabrication problems and tank/structure interface problems. As a part of these recommendations, critical dimensions of plumbing adapter fittings are discussed and recommendations made. Tank manufacturing tolerances are given. Recommendations are made relative to cavity design and preparation to facilitate a reliable installation. The special installation requirements of non-self-sealing, self-sealing, and crash-resistant tanks are discussed. This document is not intended to replace the information or requirements of the military and commercial procurement specifications listed in section 3.
Standard

AIRCRAFT FUEL SYSTEM AND COMPONENT ICING TEST

1979-03-15
HISTORICAL
ARP1401
This Aerospace Recommended Practice (ARP) covers a brief discussion of the icing problem in aircraft fuel systems and different means that have been used to test for icing. Fuel preparation procedures and icing tests for aircraft fuel systems and components are proposed herein as a recommended practice to be used in the aircraft industry for fixed wing aircraft and their operational environment only. In the context of this ARP, the engine is not considered to be a component of the aircraft fuel system, for the engine fuel system is subjected to icing tests by the engine manufacturer for commercial and particular military applications.
Standard

Aerospace Fuel System Specifications and Standards

1986-09-01
HISTORICAL
AIR1408A
This report lists documents that aid and govern the design of gas turbine powered aircraft and missile fuel systems. The report lists the military and industry specifications and standards and the most notable design handbooks that are commonly used in fuel system design. The specifications and standards section has been divided into two parts, a master list arranged numerically of all industry and military specifications and standards and a component list that provides a functional breakdown and a cross-reference of these documents. It is intended that this report be a supplement to specifications MIL-F-8615, MIL-F-17874, MIL-F-38363 and MIL-F-87154. Revisions and amendments which are correct for the specifications and standards are not listed. The fuel system design handbooks are listed for fuels and for system and component design.
Standard

Aircraft Flexible Tanks General Design and Installation Recommendations

1996-10-01
CURRENT
AIR1664A
This SAE Aerospace Information Report (AIR) includes general information about the various types and styles of flexible tanks and the tank-mounted fittings that adapt the tank to the surrounding structure and fluid-system plumbing. Recommendations are given relative to the dimensional layout of the tank when these recommendations serve to avoid tank fabrication problems and tank/structure interface problems. As a part of these recommendations, critical dimensions of plumbing adapter fittings are discussed and recommendations made. Tank manufacturing tolerances are given. Recommendations are made relative to cavity design and preparation to facilitate a reliable installation. The special installation requirements of nonself-sealing, self-sealing, and crash-resistant tanks are discussed. This document is not intended to replace the information or requirements of the military and commercial procurement specifications listed in Section 2.
Standard

Aircraft Fuel System and Component Icing Test

2012-06-06
CURRENT
ARP1401B
This Aerospace Recommended Practice (ARP) covers a brief discussion of the icing problem in aircraft fuel systems and different means that have been used to test for icing. Fuel preparation procedures and icing tests for aircraft fuel systems and components are proposed herein as a recommended practice to be used in the aircraft industry for fixed wing aircraft and their operational environment only. In the context of this ARP, the engine (and APU) is not considered to be a component of the aircraft fuel system, for the engine fuel system is subjected to icing tests by the engine/APU manufacturer for commercial and specific military applications. This ARP is written mostly to address fuel system level testing. It also provides a means to address the requirements of 14 CFR 23.951(c) and 25.951(c). Some of the methods described in this document can be applied to engine and APU level testing or components of those application domains.
Standard

Aircraft Fuel System and Component Icing Test

1997-12-01
HISTORICAL
ARP1401A
This Aerospace Recommended Practice (ARP) covers a brief discussion of the icing problem in aircraft fuel systems and different means that have been used to test for icing. Fuel preparation procedures and icing tests for aircraft fuel systems and components are proposed herein as a recommended practice to be used in the aircraft industry for fixed wing aircraft and their operational environment only. In the context of this ARP, the engine is not considered to be a component of the aircraft fuel system, for the engine fuel system is subjected to icing tests by the engine manufacturer for commercial and particular military applications.
Standard

CAPACITIVE FUEL GAUGING SYSTEM ACCURACIES

1989-03-01
HISTORICAL
AIR1184A
This report is intended to identify the necessary analytical tools to enable making value judgments for minimizing the various errors typically encountered in capacitance systems. Thus, in addition to identification of error sources, it describes the basic factors which cause the errors. When coupled with appraisals of the relative costs of minimizing the errors, this knowledge will furnish a tool with which to optimize gauging system accuracy, and thus, to obtain the optimum overall system within the constraints imposed by both design and budgetary considerations. Since the subject of capacitance accuracy is quite complex, no attempt is made herein to present a fully-comprehensive evaluation of all factors affecting gauging system accuracy. Rather, the major contributors to gauging system inaccuracy are discussed and emphasis is given to simplicity and clarity, somewhat at the expense of completeness. An overview of Capacitive Fuel Gauging operation is provided in the Appendix.
Standard

Capacitive Fuel Gauging System Accuracies

2016-08-12
CURRENT
AIR1184B
This report is intended to identify the various errors typically encountered in capacitance fuel quantity measurement systems. In addition to identification of error sources, it describes the basic factors which cause the errors. When coupled with appraisals of the relative costs of minimizing the errors, this knowledge will furnish a tool with which to optimize gauging system accuracy, and thus, to obtain the optimum overall system within the constraints imposed by both design and budgetary considerations. Since the subject of fuel measurement accuracy using capacitance based sensing is quite complex, no attempt is made herein to present a fully-comprehensive evaluation of all factors affecting gauging system accuracy. Rather, the major contributors to gauging system inaccuracy are discussed and emphasis is given to simplicity and clarity, somewhat at the expense of completeness. An overview of capacitive fuel gauging operation can be found in AIR5691.
Standard

Composite Fuel Tanks, Fuel System Design Considerations

2012-12-11
CURRENT
AIR5774
This SAE Aerospace Information Report (AIR) is a compilation of engineering references and data useful to the technical community that can be used to ensure fuel system compatibility with composite structure. This AIR is not a complete detailed design guide and is not intended to satisfy all potential fuel system applications. Extensive research, design, and development are required for each individual application.
Standard

Considerations on Ice Formation in Aircraft Fuel Systems

2006-08-24
CURRENT
AIR790C
Ice formation in aircraft fuel systems results from the presence of dissolved and undissolved water in the fuel. Dissolved water or water in solution with hydrocarbon fuels constitutes a relatively small part of the total water potential in a particular system with the quantity dissolved being primarily dependent on the fuel temperature and the water solubility characteristics of the fuel. One condition of undissolved water is entrained water such as water particles suspended in the fuel as a result of mechanical agitation of free water or conversion of dissolved water through temperature reduction. Another condition of undissolved water is free water which may be introduced as a result of refueling or the settling of entrained water which collects at the bottom of a fuel tank in easily detectable quantities separated by a continuous interface from the fuel above. Water may also be introduced as a result of condensation from air entering a fuel tank through the vent system.
Standard

Considerations on Ice Formation in Aircraft Fuel Systems

1999-10-01
HISTORICAL
AIR790B
This document suggests and summarizes points that should be considered with respect to the formation of ice in aircraft fuel systems. These summaries represent a cross-section of the opinions of fuel system designers and users.
Standard

DEFINITION OF PRESSURE SURGE TEST AND MEASUREMENT METHODS FOR RECEIVER AIRCRAFT

1983-03-01
HISTORICAL
ARP1665
The test procedure applies to the refueling manifold system connecting the receiver aircraft fuel tanks to the refueling source fuel pump(s) for both ground and aerial refueling. The test procedure is intended to verify that the limit value for surge pressure specified for the receiver fuel system is not exceeded when refueling from a refueling source which meets the requirements of AS 1284 (reference 2). This recommended practice is not directly applicable to surge pressure developed during operation of an aircraft fuel system, such as initiating or stopping engine fuel feed or fuel transfer within an aircraft, or the pressure surge produced when the fuel pumps are first started to fill an empty fuel manifold.
Standard

Definition of Pressure Surge Test and Measurement Methods for Receiver Aircraft

1997-12-01
CURRENT
ARP1665A
The test procedure applies to the refueling manifold system connecting the receiver aircraft fuel tanks to the refueling source fuel pump(s) for both ground and aerial refueling. The test procedure is intended to verify that the limit value for surge pressure specified for the receiver fuel system is not exceeded when refueling from a refueling source which meets the requirements of AS1284 (reference 2). This recommended practice is not directly applicable to surge pressure developed during operation of an aircraft fuel system, such as initiating or stopping engine fuel feed or fuel transfer within an aircraft, or the pressure surge produced when the fuel pumps are first started to fill an empty fuel manifold.
Standard

Design and Operating Requirements of the Onboard Aircraft Refueling System and Associated Ground Refueling Equipment Interface

2018-03-18
CURRENT
AS5751
This SAE Aerospace Specification (AS) is applicable to all aircraft. This AS defines the minimum design and operating requirements for the aircraft refueling interface. These requirements establish the minimum criteria for the aircraft design that provides practical standardized refueling system requirements, provides minimum standardized criteria for the operation and performance of any aircraft refueling equipment, and establishes an integrated minimum performance for aircraft refueling operations. This standardization provides the minimum design criteria to assure full compatibility between the aircraft refueling system connection point(s), aircraft operating characteristics, and the design and operation of ground based aircraft refueling equipment in all steady state and dynamic refueling and defueling conditions. The criteria that shall be used to test the operation and performance of the aircraft refueling system and equipment are also specified.
Standard

Electrical Bonding of Aircraft Fuel Systems

2017-10-20
WIP
AIR5128B
This SAE Aerospace Information Report (AIR) is limited to the subject of aircraft fuel systems and the questions concerning the requirements for electrical bonding of the various components of the system as related to Static Electric Charges, Fault Current, Electromagnetic Interference (EMI) and Lightning Strikes (Direct and Indirect Effects). This AIR contains engineering guidelines for the design, installation, testing (measurement) and inspection of electrical bonds.
Standard

Electrical Bonding of Aircraft Fuel Systems

2012-12-18
CURRENT
AIR5128A
This SAE Aerospace Information Report (AIR) is limited to the subject of aircraft fuel systems and the questions concerning the requirements for electrical bonding of the various components of the system as related to Static Electric Charges, Fault Current, Electromagnetic Interference (EMI) and Lightning Strikes (Direct and Indirect Effects). This AIR contains engineering guidelines for the design, installation, testing (measurement) and inspection of electrical bonds.
Standard

Engine Fuel System and Component Icing Test

2015-06-25
WIP
ARP6340
This ARP provides recommended practice on the considerations and methodology to demonstrate acceptable performance of the Engine components / fuel system, and APU, whilst operating throughout the flight cycle / engine duty for continuous operation with iced fuel and short duration operation with a snowshower resulting from release of accreted ice from fuel washed surfaces, where no anti-icing additives are present (e.g. Fuel System Icing Inhibitor FSII or alternative). Two scenarios must be considered when demonstrating the capability of Engine components / fuel system, and APU to operate with fuel borne ice to satisfy certification regulations applications in support of FAA Part 23 and Part 25, CFR Part 33, and corresponding EASA CS-E regulations, and equivalent Military application requirements.
Standard

FUEL GAGING SYSTEM ACCURACIES

1973-01-01
HISTORICAL
AIR1184
It is intended to provide capacitance gaging system "specifiers" with the necessary tools to make value judgements concerning the various errors typically encountered in systems of this type. Thus, in addition to merely identifying the error-causes, descriptions are given concerning the basic factors from which these error-causes derive. This knowledge, when complemented with appraisals of the relative costs of minimizing the error-causes, will furnish the system specifier with a powerful tool with which to optimize gaging system accuracy, and thus, to obtain the "best possible" overall system within the constraints imposed by both design and budgetary considerations. Since the subject of capacitance gaging accuracy is quite extensive, and in some instances very complex, no attempt is made herein to present an all-inclusive and fully comprehensive evaluation of the subject. Rather, the major contributors to gaging system inaccuracy are discussed.
X