Refine Your Search

Topic

Search Results

Standard

AEROSPACE FUEL SYSTEM SPECIFICATIONS AND STANDARDS

1976-03-01
HISTORICAL
AIR1408
This report lists military and industry specifications and standards which are commonly used in aerospace gas turbine fuel systems. It is intended as a supplement to specifications MIL-F-3863, MIL-F-17874 and MIL-F-8615. Revisions and amendments which are current for these specifications and standards are not listed.
Standard

AIRCRAFT FLEXIBLE TANKS GENERAL DESIGN AND INSTALLATION RECOMMENDATIONS

1994-09-01
HISTORICAL
AIR1664
This Aerospace Information Report (AIR) includes general information about the various types and styles of flexible tanks and the tank-mounted fittings that adapt the tank to the surrounding structure and fluid-system plumbing. Recommendations are given relative to the dimensional layout of the tank when these recommendations serve to avoid tank fabrication problems and tank/structure interface problems. As a part of these recommendations, critical dimensions of plumbing adapter fittings are discussed and recommendations made. Tank manufacturing tolerances are given. Recommendations are made relative to cavity design and preparation to facilitate a reliable installation. The special installation requirements of non-self-sealing, self-sealing, and crash-resistant tanks are discussed. This document is not intended to replace the information or requirements of the military and commercial procurement specifications listed in section 3.
Standard

Aerospace Fuel System Specifications and Standards

1986-09-01
HISTORICAL
AIR1408A
This report lists documents that aid and govern the design of gas turbine powered aircraft and missile fuel systems. The report lists the military and industry specifications and standards and the most notable design handbooks that are commonly used in fuel system design. The specifications and standards section has been divided into two parts, a master list arranged numerically of all industry and military specifications and standards and a component list that provides a functional breakdown and a cross-reference of these documents. It is intended that this report be a supplement to specifications MIL-F-8615, MIL-F-17874, MIL-F-38363 and MIL-F-87154. Revisions and amendments which are correct for the specifications and standards are not listed. The fuel system design handbooks are listed for fuels and for system and component design.
Standard

Aircraft Flexible Tanks General Design and Installation Recommendations

1996-10-01
CURRENT
AIR1664A
This SAE Aerospace Information Report (AIR) includes general information about the various types and styles of flexible tanks and the tank-mounted fittings that adapt the tank to the surrounding structure and fluid-system plumbing. Recommendations are given relative to the dimensional layout of the tank when these recommendations serve to avoid tank fabrication problems and tank/structure interface problems. As a part of these recommendations, critical dimensions of plumbing adapter fittings are discussed and recommendations made. Tank manufacturing tolerances are given. Recommendations are made relative to cavity design and preparation to facilitate a reliable installation. The special installation requirements of nonself-sealing, self-sealing, and crash-resistant tanks are discussed. This document is not intended to replace the information or requirements of the military and commercial procurement specifications listed in Section 2.
Standard

FLUID SYSTEM COMPONENT SPECIFICATION PREPARATION CRITERIA

1983-06-01
HISTORICAL
AIR1082A
The "Scope" section may be a very brief statement describing the coverage of the specification for a simple device, or it may require a long description of limiting parameters for a more complex device or system having a complicated interface definition.
Standard

Fuel Level Control Valves and Systems

2016-05-17
CURRENT
AIR1660C
A fuel level control valve/system controls the quantity of fuel in a tank being filled or emptied on the aircraft. This document provides a general familiarization with these mechanisms (e.g., forms they take, functions, system design considerations). This document provides the aircraft fuel system designer with information about these mechanisms/devices, so that he can prescribe the types of level control valves/systems which are best suited for his particular fuel system configuration. The scope has been expanded as different aircraft manufacturers may use different type of fuel system architectures. Their refueling and defueling systems may take different configurations, may require different types of fuel control valves and may require different types of interface with the onboard Fuel Measurement System. They must also limit pressure surges and be compatible with ground refueling equipment which have varying surge potentials and create surges.
Standard

Fuel Level Control Valves/Systems

1997-12-01
HISTORICAL
AIR1660B
A fuel level control valve/system controls the quantity of fuel in a tank being filled or emptied. This document provides a general familiarization with these mechanisms (e.g. forms they take, functions, system design considerations). This document provides the aircraft fuel system designer with information about these mechanisms/devices, so that he can prescribe the types of level control valves/systems which are best suited for his particular fuel system configuration.
Standard

GLOSSARY OF TERMS - AIRCRAFT GROUND REFUELING

1994-03-01
CURRENT
AIR4783
This SAE Aerospace Information Report (AIR) presents a glossary of terns commonly utilized in the ground delivery of fuel to an aircraft and some terms relating to the aircraft being refueled.
Standard

Method-Pressure Drop Tests for Fuel System Components

2019-05-23
WIP
ARP868D
This document provides recommended methods and describes associated equipment and test setups to assist in understanding and conducting pressure drop tets on fuel system components. Backgroundn information and suggestions are provided as means of improving accuracy and repeatability of test results. Although written specifically for fuel system components, the methods, equipment and suggestions presented herein apply equally to pressure drop tests of other liquid-handling devices.
Standard

Method-Pressure Drop Tests for Fuel System Components

2001-11-30
CURRENT
ARP868C
This document provides recommended methods and describes associated equipment and test setups to assist in understanding and conducting pressure drop tests on fuel system components. Background information and suggestions are provided as means of improving accuracy and repeatability of test results. Although written specifically for fuel system components, the methods, equipment and suggestions presented herein apply equally to pressure drop tests of other liquid-handling devices.
Standard

Nozzles and Ports - Gravity Fueling Interface Standard for Civil Aircraft

1997-08-01
HISTORICAL
AS1852B
This SAE Aerospace Standard (AS) defines the maximum allowable free opening dimensions for airframe fueling ports on civil aircraft that require the exclusive use of gasoline as an engine fuel and the minimum free opening dimensions for airframe fueling ports on civil aircraft that operate with turbine fuels as the primary fuel type. In addition, this document defines the minimum fuel nozzle tip dimensions for turbine fuel ground service equipment and the maximum fuel nozzle tip diameter for gasoline ground service equipment.
Standard

Nozzles and Ports - Gravity Fueling Interface Standard for Civil Aircraft

2006-03-24
HISTORICAL
AS1852C
This SAE Aerospace Standard (AS) defines the maximum allowable free opening dimensions for airframe fueling ports on civil aircraft that require the exclusive use of gasoline as an engine fuel, and the minimum free opening dimensions for airframe fueling ports on civil aircraft that operate with turbine fuels as the primary fuel type and with gasoline as the emergency fuel type. This SAE Aerospace Standard (AS) also defines the features and dimensions for airframe refueling ports on civil aircraft that require the exclusive use of turbine fuel as an engine fuel. In addition, this document defines the minimum fuel nozzle spout dimensions for turbine fuel ground service equipment, and the maximum fuel nozzle spout diameter for gasoline ground service equipment.
Standard

Nozzles and Ports - Gravity Fueling Interface Standard for Civil Aircraft

1988-02-01
HISTORICAL
AS1852A
This SAE Aerospace Standard (AS) defines the maximum allowable free opening dimensions for airframe fueling ports on civil aircraft that require the exclusive use of gasoline as an engine fuel, and the minimum free opening dimensions for airframe fueling ports on civil aircraft that operate with turbine fuels as the primary fuel type and with gasoline as the emergency fuel type. This SAE Aerospace Standard (AS) also defines the features and dimensions for airframe refueling ports on civil aircraft that require the exclusive use of turbine fuel as an engine fuel. In addition, this document defines the minimum fuel nozzle spout dimensions for turbine fuel ground service equipment, and the maximum fuel nozzle spout diameter for gasoline ground service equipment.
Standard

Nozzles and Ports - Gravity Fueling Interface Standard for Civil Aircraft

1984-12-01
HISTORICAL
AS1852
This SAE Aerospace Standard (AS) defines the maximum allowable free opening dimensions for airframe fueling ports on civil aircraft that require the exclusive use of gasoline as an engine fuel, and the minimum free opening dimensions for airframe fueling ports on civil aircraft that operate with turbine fuels as the primary fuel type and with gasoline as the emergency fuel type. This SAE Aerospace Standard (AS) also defines the features and dimensions for airframe refueling ports on civil aircraft that require the exclusive use of turbine fuel as an engine fuel. In addition, this document defines the minimum fuel nozzle spout dimensions for turbine fuel ground service equipment, and the maximum fuel nozzle spout diameter for gasoline ground service equipment.
Standard

Nozzles and Ports – Gravity Fueling Interface Standards for Civil Aircraft

2012-01-03
CURRENT
AS1852D
This SAE Aerospace Standard (AS) defines the maximum allowable free opening dimensions for airframe fueling ports on civil aircraft that require the exclusive use of gasoline as an engine fuel, and the minimum free opening dimensions for airframe fueling ports on civil aircraft that operate with turbine fuels as the primary fuel type and with gasoline as the emergency fuel type. This SAE Aerospace Standard (AS) also defines the features and dimensions for airframe refueling ports on civil aircraft that require the exclusive use of turbine fuel as an engine fuel. In addition, this document defines the minimum fuel nozzle spout dimensions for turbine fuel ground service equipment, and the maximum fuel nozzle spout diameter for gasoline ground service equipment.
X