Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

0D-1D Coupling for an Integrated Fuel Economy Control Strategy for a Hybrid Electric Bus

2011-09-11
2011-24-0083
Hybrid electric vehicles (HEVs) are worldwide recognized as one of the best and most immediate opportunities to solve the problems of fuel consumption, pollutant emissions and fossil fuels depletion, thanks to the high reliability of engines and the high efficiencies of motors. Moreover, as transport policy is becoming day by day stricter all over the world, moving people or goods efficiently and cheaply is the goal that all the main automobile manufacturers are trying to reach. In this context, the municipalities are performing their own action plans for public transport and the efforts in realizing high efficiency hybrid electric buses, could be supported by the local policies. For these reasons, the authors intend to propose an efficient control strategy for a hybrid electric bus, with a series architecture for the power-train.
Standard

10 Megabit/sec Network Configuration Digital Time Division Command/Response Multiplex Data Bus

2018-01-18
CURRENT
AS5652A
This SAE Aerospace Standard (AS) contains requirements for a digital time division command/response multiplex data bus, for use in systems integration that is functionally similar to MIL-STD-1553B with Notice 2 but with a star topology and some deleted functionality. Even with the use of this document, differences may exist between multiplex data buses in different system applications due to particular application requirements and the options allowed in this document. The system designer must recognize this fact and design the multiplex bus controller (BC) hardware and software to accommodate such differences. These designer selected options must exist to allow the necessary flexibility in the design of specific multiplex systems in order to provide for the control mechanism, architectural redundancy, degradation concept, and traffic patterns peculiar to the specific application requirements.
Standard

10 Megabit/sec Network Configuration Digital Time Division Command/Response Multiplex Data Bus

2005-12-29
HISTORICAL
AS5652
This SAE Aerospace Standard (AS) contains requirements for a digital time division command/response multiplex data bus, for use in systems integration that is functionally similar to MIL-STD-1553B with Notice 2 but with a star topology and some deleted functionality. Even with the use of this document, differences may exist between multiplex data buses in different system applications due to particular application requirements and the options allowed in this document. The system designer must recognize this fact and design the multiplex bus controller (BC) hardware and software to accommodate such differences. These designer selected options must exist to allow the necessary flexibility in the design of specific multiplex systems in order to provide for the control mechanism, architectural redundancy, degradation concept, and traffic patterns peculiar to the specific application requirements.
Technical Paper

1000 kW Sodium-Sulfur Battery Pilot Plant: Its Operation Experience at Tatsumi Test Facility

1992-08-03
929055
Since 1978, the Agency of Industrial Science and Technology (AIST) of MITI has promoted research and development of “Large-Scale Energy Conservation Technology” popularly known as the “Moonlight Project”. As the first step, “system technology tests” using improved lead acid batteries started at Kansai Electric's Tatsumi Electric Energy Storage System Test Plant on October 1, 1986. The results showed that this system can work not only as a load-leveling apparatus but also as a high-quality power source which can support the utility power system with its load frequency control and voltage regulation capabilities. As the second step of these R&D activities, a 1MW/8MWh sodium-sulfur battery pilot plant was constructed at the same Tatsumi site. On July 11, 1991, 1000 kW× 8H facility, the largest of its type in the world, was completed and started operation. This paper describes the construction experience and operation results of the pilot plant.
Technical Paper

12-Volt Vacuum Fluorescent Display Drive Circuitry for Electronically Tuned Radios

1986-03-01
860126
The trend towards battery voltage vacuum fluorescent displays continues the technological advances in design and construction of VFD's, as they are applied to the automobile environment. With the ever increasing use of electronic displays for electronically tuned radios (ETR's), compact disc (CD) players, and other entertainment systems, advances in battery voltage displays and their associated drive circuitry have become a necessity. With the inherent advantages of low voltage operation and high information density, VFD's will continue to dominate the automobile audio markets. This paper will discuss battery voltage displays, the basic circuitry necessary to operate a vacuum fluorescent display, and comment on the “off the shelf” controller and driver circuitry available.
Technical Paper

120VAC Power Inverters

1983-02-01
830131
Inverters are solid state devices which change DC to 120VAC electricity. They are sufficiently rugged and reliable to make them practical for use on utility vehicles for operating thumpers, tools, lights and induction motor loads. The SCR type rather than the transistor type inverter is generally required for inductive and reactive loads. Static inverters operate from battery input. They provide power without running an engine, but are limited by battery capacity so work best in intermittent load applications. Dynamic inverters operate from alternator input and will handle continuous loads to 7200 watts with truck engine running.
Technical Paper

12V/14V to 36V/42V Automotive System Supply Voltage Change and the New Technologies

2002-11-19
2002-01-3557
This paper shows some aspects of the automotive voltage energy system level shift from 14 to 42 Volts. New features and prospective emissions/fuel economy requirements are creating electrical power needs in future automobiles, which today's conventional system cannot adequately supply at 14 Vdc (nominal, with a 12 Volt battery). It will be necessary to provide electric motors, DC/DC converters, inverters, battery management, and other electronic controls to meet higher voltage requirements. Suppliers must now include 42 Volt components and systems within their product range and make these new components as light, small, and cost efficient as possible. This paper is a compilation of several published works aiming to offer a synthesis to introduce this subject to the Brazilian Automotive Market.
Technical Paper

14/42V - Electrical Power Supply Systems Consequences for Electrical Interconnections and Switches

2000-08-21
2000-01-3055
This paper provides an overview about the consequences of a 14/42 V - Electrical Power Supply System for the Electrical Interconnection and Switching Technology. It presents design guidelines and solutions for connector systems including advanced applications like fuse and relay boxes and gives an overview of those existing connectors already suited for 42 V and even higher voltages. The problem of arcing due to the increased voltage is discussed for the case that mating and unmating under load has to be taken into consideration. Arcing also has a tremendous impact on the design of 42 V proof relays. Therefore, some basic results be presented along with proposals how these problems can be overcome by appropriate designs. Another part of the paper looks at the electrical power supply system itself. Here interconnection techniques for new battery systems are discussed. Finally, the chances for new technologies are highlighted.
Standard

15 Pole Connector Between Towing Vehicles and Trailers with 12 Volt Nominal Supply

2013-04-09
HISTORICAL
J2691_201304
This SAE standard establishes the minimum construction and performance requirements for a 15 Pole Connector Between Towing Vehicles and Trailers, for trucks, trailers, and dollies in conjunction with SAE J2742 “Combination 11 Conductors and 4 Pairs ECBS Cable”. The connector accommodates both power and ISO 11992-1 signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
Standard

15 Pole Connector Between Towing Vehicles and Trailers with 12 Volt Nominal Supply

2018-04-15
CURRENT
J2691_201804
This SAE standard establishes the minimum construction and performance requirements for a 15 Pole Connector Between Towing Vehicles and Trailers, for trucks, trailers, and dollies in conjunction with SAE J2742. The connector accommodates both power and ISO 11992-1 signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
Technical Paper

1553 RT Mechanizations for Data Sample Consistency and Multi-Message Transfers

1993-04-01
931600
System requirements and Interface Control Drawings (ICDs) make a variety of demands for MIL-STD-1553 remote terminals (RTs). Among these requirements are the need to ensure data integrity and sample data consistency, the need to perform bulk (multi-message) data transfers, and the need to offload the operation of the host CPU to the greatest degree possible. This latter requirement is reflected in such specifications as CPU spare bandwidth. The latest 1553 terminals provide a variety of choices for performing the different types of transfers. This paper provides a discussion of the hardware and software techniques for achieving these objectives. Three different schemes for RT subaddress memory management are presented: single message, circular buffer, and double buffered. For receive and transmit messages, these include fully synchronous single message transfers, asynchronous single message transfers, and multi-message transfers.
Technical Paper

16-Channel Portable Data Acquisition and Reduction System

1984-04-01
840764
A Microprocessor Data Acquisition System has been designed to be cab-mounted in vehicles or used in laboratories to acquire up to 16 channels of test data. This data may be acquired as time-at-level histograms in one or two dimensions with min-max-mean data recovery, time histories, or peaks and valleys stored on digital tape. The system includes a microcomputer-based Playback/Support Box that simplifies playback of data tapes for computer analysis or stand-alone data plotting using a graphics terminal.
Technical Paper

1970s Development of 21st Century Mobile Dispersed Power

1973-02-01
730709
A mobile and dispersed power system is necessary for an advanced technological-industrial society. Today's petroleum-based system discharges waste products and heat and is growing exponentially. Energy resource commitment has already intersected “ultimate” low-cost petroleum supplies in the United States and will do so for the world before 2000; this portends major changes and cost increases. The twenty-first century system for mobile-dispersed power will reflect the energy source selected to replace petroleum-for example, coal, solar insolation, or uranium. It will incorporate a fuel intermediate such as methanol, ammonia, or hydrogen, and a suitably matched “engine.” The complete change will require more than 25 years because of the magnitude, fragmentation, structural gaps, complexity, and variety of the mobile-dispersed power system.
Technical Paper

1996 GM 7.4 Liter Engine Upgrade

1996-02-01
960012
General Motors Powertrain Division has developed the next generation big block V8 engine for introduction in the 1996 model year. In addition to meeting tighter emission and on-board diagnostic legislation, this engine evolved to meet both customer requirements and competitive challenges. Starting with the proven dependability of the time tested big block V8, goals were set to substantially increase the power, torque, fuel economy and overall pleaseability of GM's large load capacity gasoline engine. The need for this new engine to meet packaging requirements in many vehicle platforms, both truck and OEM, as well as a requirement for minimal additional heat rejection over the engine being replaced, placed additional constraints on the design.
Technical Paper

2000 University of Maryland FutureTruck Design Description

2001-03-05
2001-01-0681
The University of Maryland team converted a model year 2000 Chevrolet Suburban to an ethanol-fueled hybrid-electric vehicle (HEV) and tied for first place overall in the 2000 FutureTruck competition. Competition goals include a two-thirds reduction of greenhouse gas (GHG) emissions, a reduction of exhaust emissions to meet California ultra-low emissions vehicle (ULEV) Tier II standards, and an increase in fuel economy. These goals must be met without compromising the performance, amenities, safety, or ease of manufacture of the stock Suburban. The University of Maryland FutureTruck, Proteus, addresses the competition goals with a powertrain consisting of a General Motors 3.8-L V6 engine, a 75-kW (100 hp) SatCon electric motor, and a 336-V battery pack. Additionally, Proteus incorporates several emissions-reducing and energy-saving modifications; an advanced control strategy that is implemented through use of an on-board computer and an innovative hybrid-electric drive train.
Technical Paper

200–300 HP Gas Turbine Engine Family for the U. S. Army

1964-01-01
640101
This paper describes a series of 200–300 hp gas turbine engines being developed by the AiResearch-Phoenix Division of the Garrett Corp. for the U.S. Army Engineer Research and Development Laboratories. These engines, which include both simple cycle and regenerative types, are intended for ground power applications, primarily for direct driving high speed equipment such as high frequency alternators. Descriptions are given of the basic approach taken to meet the Army’s requirements, the resulting engine configurations, the development progress to date, and future program plans and timing.
Technical Paper

240 VDC Electric Vehicle System

1979-02-01
790159
THE BATTERY is the primary component limiting electric vehicle performance that equals today's standard of expectations as defined by the I. C. engine powered vehicles. Efforts to optimize the electric vehicle performance is leading many people to select and assemble the highest efficiency components available. High voltage electric vehicle power system can provide performance advantages over lower voltage systems, but only if this voltage is in balance with the total system. Mixing high efficiency components does not Insure total system efficiency optimization. The ability of a battery to release its stored energy is a function of its demand. Higher current demands will reduce the efficiency of a battery. This paper reveals how such a mismatch occurred and its reflection on what appeared to be a battery problem.
Technical Paper

25-Ah Li Ion Cell for the Mars 2001 Lander

1999-08-02
1999-01-2640
BlueStar Advanced Technology Corporation (BATC) as part of its participation in the USAF/NASA Li Ion Battery Development Consortium has developed a candidate 25-Ah cell for the Mars 2001 Lander. Although the capacity and cycle life requirements for this application are relatively modest, the low temperature performance (−20°C) and pulse discharge requirements (60A) are somewhat more challenging. Geometric requirements within the spacecraft also constrain the cell design leading to a cell with an aspect ratio quite different from those 25-Ah Li ion cells previously developed by BATC. The design of this cell and its compliance with the performance requirements of the mission will be discussed.
X