Refine Your Search

Topic

Search Results

Standard

AEROSPACE - FLIGHT CONTROL ACTUATOR DISPLACEMENT - METHOD FOR COLLECTION OF DUTY CYCLE DATA

1994-05-01
HISTORICAL
ARP4895
The scope of this SAE Aerospace Recommended Practice (ARP) covers acquisition of flight test data for use in developing a statistical data base of aerospace vehicle flight control surface actuator duty cycle. The statistical data base is intended for use in establishing industry guidelines and procurement specification requirements for actuator displacement duty cycle. The objective of this ARP is to provide a uniform method for the aerospace industry to collect flight control displacement type duty cycle data during demonstration and full scale development of new aircraft or during development testing of new models of existing aircraft.
Standard

AEROSPACE FLUID POWER AND CONTROL/ACTUATION SYSTEM GLOSSARY

1985-10-01
HISTORICAL
AIR1916
General terms peculiar to aerospace fluid power and control systems are defined in this glossary. Relevant terms have been excerpted from the referenced documents and included herein from the aerospace terms felt to be most useful to the ISO. This is a systems document and the only component-related terms are those significant at the systems level.
Standard

Actuation System Failure Detection Methods

2007-01-11
HISTORICAL
AIR5273
This AIR provides descriptions of aircraft actuation system failure-detection methods. The methods are those used for ground and in-flight detection of failures in electrohydraulic actuation systems for primary flight control. The AIR concentrates on full Fly-By-Wire (FBW) flight control actuation though it includes one augmented-control system. The background to the subject is discussed in terms of the impact that factors such as the system architecture have on the detection methods chosen for the flight control system. The types of failure covered by each monitoring technique are listed and discussed in general. The way in which these techniques have evolved is illustrated with an historical review of the methods adopted for a series of aircraft, arranged approximately in design chronological order.
Standard

Aerospace - Flight Control Systems - Design, Installation and Test of Piloted Military Aircraft, General Specification For

2007-07-06
HISTORICAL
AS94900
This specification establishes general performance, design, test, development and quality assurance requirements for the Flight Control Systems of military piloted aircraft. Flight Control Systems (FCS) include all components used to transmit flight control commands from the pilot or other sources to appropriate force and moment producers. Flight control commands normally result in control of aircraft altitude, airspeed, flight path, attitude, aerodynamic or geometric configuration, ride quality, and structural modes. Among components included are the pilot’s controls, dedicated displays and logic switching, system inertial and air data sensors, signal computation, test devices, mechanical transmission devices, actuators, power sources, and signal transmission lines dedicated to flight control. Excluded are aerodynamic surfaces, engines and engine control systems, rotorcraft rotors, fire control devices, crew displays and electronics not dedicated to flight control.
Standard

Aerospace - Vehicle Management Systems - Flight Control Design, Installation and Test of, Military Unmanned Aircraft, Specification Guide For

2019-10-24
WIP
ARP94910A
This document establishes recommended practices for the specification of general performance, design, test, development, and quality assurance requirements for the flight control related functions of the Vehicle Management Systems (VMS) of military Unmanned Aircraft (UA), the airborne element of Unmanned Aircraft Systems (UAS), as defined by ASTM F 2395-07. The document is written for military unmanned aircraft intended for use primarily in military operational areas. The document also provides a foundation for considerations applicable to safe flight in all classes of airspace.
Standard

Aerospace - Vehicle Management Systems - Flight Control Design, Installation and Test of, Military Unmanned Aircraft, Specification Guide For

2012-12-19
CURRENT
ARP94910
This document establishes recommended practices for the specification of general performance, design, test, development, and quality assurance requirements for the flight control related functions of the Vehicle Management Systems (VMS) of military Unmanned Aircraft (UA), the airborne element of Unmanned Aircraft Systems (UAS), as defined by ASTM F 2395-07. The document is written for military unmanned aircraft intended for use primarily in military operational areas. The document also provides a foundation for considerations applicable to safe flight in all classes of airspace.
Standard

Aerospace Active Inceptor Systems for Aircraft Flight and Engine Controls

2018-07-24
CURRENT
ARP5764
The purpose of this document is to develop the general characteristics and requirements for feel-force control systems for active cockpit controllers, also known as Active Inceptors. The document presents technical material that describes the recommended key characteristics and design considerations for these types of systems. Where appropriate, the effects of platform specific requirements (e.g., single axis/dual axis, single seat/dual seat, civil/military, rotorcraft/fixed wing aircraft, etc.) are clearly identified. The material developed will serve as a reference guide for: a Aircraft prime contractors who want to understand active cockpit controller technology and develop their own set of requirements; b Suppliers that develop active cockpit controller equipment and; c Regulatory Authorities who will be involved in the certification of these types of systems.
Standard

Aerospace Fly-by-Light Actuation Systems

2007-01-11
HISTORICAL
AIR4982
This SAE Aerospace Information Report (AIR) has been prepared to provide information regarding options for optical control of fluid power actuation devices. It is not intended to establish standards for optical fluid power control, but rather is intended to provide a baseline or foundation from which standards can be developed. It presents and discusses approaches for command and communication with the actuation device via electro-optic means. The development of standards will require industry wide participation and cooperation to ensure interface commonality, reliability, and early reduction to practice. To facilitate such participation, this document provides potential users of the technology a balanced consensus on its present state of development, the prospects for demonstration of production readiness, and a discussion of problem areas within this technology.
Standard

Aerospace Fly-by-Light Actuation Systems

2014-12-18
CURRENT
AIR4982A
This SAE Aerospace Information Report (AIR) has been prepared to provide information regarding options for optical control of fluid power actuation devices. It is not intended to establish standards for optical fluid power control, but rather is intended to provide a baseline or foundation from which standards can be developed. It presents and discusses approaches for command and communication with the actuation device via electro-optic means. The development of standards will require industry wide participation and cooperation to ensure interface commonality, reliability, and early reduction to practice. To facilitate such participation, this document provides potential users of the technology a balanced consensus on its present state of development, the prospects for demonstration of production readiness, and a discussion of problem areas within this technology.
Standard

Aircraft Flight Control Actuation System Failure-Detection Methods

2022-12-16
CURRENT
AIR5273A
This SAE Aerospace Information Report (AIR) provides descriptions of aircraft flight control actuation system failure-detection methods. The fault-detection methods are those used for ground and in-flight detection of failures in electrohydraulic actuation systems for primary flight controls.
Standard

Development Process - Aerospace Fly-By-Wire Actuation System

1997-06-01
HISTORICAL
ARP5007
This document provides a description of a process for development of fly-by-wire actuation systems. Included are (1) the development of requirements for the servo-actuator hardware and the electronics hardware and software, (2) actuator and servo-electronics interface definitions and, (3) the required communications and interactions between the servo-actuator and the servo-electronics designers.
Standard

Development Process - Aerospace Fly-By-Wire Actuation System

2020-10-09
CURRENT
ARP5007A
This document provides a description of a process for development of fly-by-wire actuation systems. Included are (1) the development of requirements for the servo-actuator hardware and the electronics hardware and software, (2) actuator and servo-electronics interface definitions and, (3) the required communications and interactions between the servo-actuator and the servo-electronics designers.
Standard

Flight Control Actuators - Dynamic Seals, Collection of Duty Cycle Data

2006-05-17
HISTORICAL
ARP4895A
This SAE Aerospace Recommended Practice (ARP) provides an algorithm aimed to analyse flight control surface actuator movements with the objective to generate duty cycle data applicable to hydraulic actuator dynamic seals. This algorithm can be used to process digitally recorded actuator positions, generated either by pure simulation, or hardware-in-the-loop simulation, or flight test of full scale demonstrator of new aircraft, of new aircraft models in development, or of in-service aircraft, depending on what is available at different stages of the aircraft development and the purpose of the duty cycle investigation. This generated duty cycle data can be used as a basis for defining dynamic seal life requirements, dynamic seal life testing, or to assess the impact of control law or other changes to dynamic seal behavior.
Standard

Integrated Rudder and Brake Pedal Unit, General Requirements for Fly-By Wire Transport and Business Aircraft

2018-10-15
CURRENT
ARP6252
This Aerospace Recommended Practice (ARP) provides general requirements for a generic, integrated rudder and brake pedal unit, incorporating a passive force-feel system that could be used for fixed-wing fly-by wire transport and business aircraft. This ARP addresses the following: The functions to be implemented The mechanical interconnection between captain and F/O station The geometric and mechanical characteristics The mechanical, electrical, and electronic interfaces The safety and certification requirements
Standard

Mechanical Control Design Guide

2012-11-01
HISTORICAL
ARP5770
This SAE Aerospace Recommended Practice (ARP) provides guidelines for the configuration and design of mechanical control signal transmission systems and subsystems. It is focused on the recommended practices for designing cable and pulley, pushrod and bellcrank and push-pull flexible cable control systems. These systems are typically used in some combination to transmit pilot commands into primary, secondary and utility control system commands (mechanical or electrical) or aircraft surface commands. On mechanically controlled aircraft, most pilot control commands are initiated through cockpit mounted wheels, sticks, levers, pedals or cranks that are coupled by pushrods or links to cable systems. The cable systems are routed throughout the aircraft and terminated in close proximity to the commanded surface or function where cranks and pushrods are again used to control the commanded function.
Standard

Methodology for Investigation of Flight Control System Anomalies

2018-04-24
WIP
AIR5875A
This SAE Aerospace Information Report (AIR) outlines comprehensive aircraft flight control system fault isolation methodology that has proven to be effective. The methodology presented in this Information Report has been used in several successful fault isolation efforts on military aircraft.
Standard

Methodology for Investigation of Flight Control System Anomalies

2011-08-01
CURRENT
AIR5875
This SAE Aerospace Information Report (AIR) outlines comprehensive aircraft flight control system fault isolation methodology that has proven to be effective. The methodology presented in this Information Report has been used in several successful fault isolation efforts on military aircraft.
Standard

Primary Flight Control Hydraulic Actuation System Interface Definition

2015-10-19
CURRENT
AIR4922A
This SAE Aerospace Information Report (AIR) provides a description of the interfaces and their requirements for generic and specific hydraulic actuation systems used in the flight control systems of manned aircraft. Included are the basic control system characteristics and functional requirements, and the essential interfaces (structural, mechanical, hydraulic power, control input, status monitoring, and environment). Major design issues, requirements, and other considerations are presented and discussed.
Standard

Primary Flight Control Hydraulic Actuation System Interface Definition

2008-07-16
HISTORICAL
AIR4922
This SAE Aerospace Information Report (AIR) provides a description of the interfaces and their requirements for generic and specific hydraulic actuation systems used in the flight control systems of manned aircraft. Included are the basic control system characteristics and functional requirements, and the essential interfaces (structural, mechanical, hydraulic power, control input, status monitoring, and environment). Major design issues, requirements, and other considerations are presented and discussed.
X