Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

End-Gas Temperature Measurements in a DOHC Spark-Ignition Engine Using CARS

2000-03-06
2000-01-0237
CARS temperature measurements were carried out both in a constant volume combustion chamber and in a spark-ignition engine. The CARS temperature measurement under engine-like condition was validated by comparing the unburned gas temperatures for premixed propane-air flame in a constant volume combustion chamber obtained by CARS with predicted temperatures of 2-zone flame propagation simulation model. There was good agreement between the predicted temperatures and the mean values of 10 CARS measurements. The standard deviation of 10 measurements at each measuring timing was about ±40 K. End-gas temperatures were measured by CARS technique in a conventional 4-cylinder DOHC spark-ignition engine with the engine motoring and firing. The measured motoring temperature matched well with the adiabatic core temperature calculated from the measured cylinder pressure. The engine was fueled with primary reference fuel (PRF80) of 80% iso-octane and 20% n-heptane by volume.
Technical Paper

Flow Characteristics in Intake Port of Spark Ignition Engine Investigated by CFD and Transient Gas Temperature Measurement

1996-10-01
961997
A computational fluid dynamics (CFD) prediction of the transient flow in the intake system of a spark ignition engine is compared to experimental data. The calculation was performed for a single cylinder version of a pre-1995 Ford two-valve production engine, while experiments were carried out on a single cylinder Ricardo Mark 3 research engine with similar overall geometric parameters. While the two engines have somewhat different geometries, this was not considered to be a significant problem for our study of flow features. Both set-ups employed gaseous fuel. The calculation was performed using the commercially available Star-CD code incorporating the complete intake manifold runner and cylinder into the mesh. Cylinder pressures were in good agreement with experiment indicating that wave dynamics were well captured. Comparison was also made to the measured instantaneous gas temperatures along the intake system.
X