Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Analysis of Fuel Behavior in the Spark-Ignition Engine Start-Up Process

1995-02-01
950678
An analysis method for characterizing fuel behavior during spark-ignition engine starting has been developed and applied to several sets of start-up data. The data sets were acquired from modern production vehicles during room temperature engine start-up. Two different engines, two control schemes, and two engine temperatures (cold and hot) were investigated. A cycle-by-cycle mass balance for the fuel was used to compare the amount of fuel injected with the amount burned or exhausted as unburned hydrocarbons. The difference was measured as “fuel unaccounted for”. The calculation for the amount of fuel burned used an energy release analysis of the cylinder pressure data. The results include an overview of starting behavior and a fuel accounting for each data set Overall, starting occurred quickly with combustion quality, manifold pressure, and engine speed beginning to stabilize by the seventh cycle, on average.
Technical Paper

Development and Use of a Computer Simulation of the Turbocompounded Diesel System for Engine Performance and Component Heat Transfer Studies

1986-03-01
860329
A computer simulation of the turbocharged turbocompounded direct-injection diesel engine system has been developed in order to study the performance characteristics of the total system as major design parameters and materials are varied. Quasi-steady flow models of the compressor, turbines, manifolds, intercooler, and ducting are coupled with a multi-cylinder reciprocator diesel model where each cylinder undergoes the same thermodynamic cycle. Appropriate thermal loading models relate the heat flow through critical system components to material properties and design details. This paper describes the basic system models and their calibration and validation against available experimental engine test data. The use of the model is illustrated by predicting the performance gains and the component design trade-offs associated with a partially insulated engine achieving a 40 percent reduction in heat loss over a baseline cooled engine.
Technical Paper

Flow Characteristics in Intake Port of Spark Ignition Engine Investigated by CFD and Transient Gas Temperature Measurement

1996-10-01
961997
A computational fluid dynamics (CFD) prediction of the transient flow in the intake system of a spark ignition engine is compared to experimental data. The calculation was performed for a single cylinder version of a pre-1995 Ford two-valve production engine, while experiments were carried out on a single cylinder Ricardo Mark 3 research engine with similar overall geometric parameters. While the two engines have somewhat different geometries, this was not considered to be a significant problem for our study of flow features. Both set-ups employed gaseous fuel. The calculation was performed using the commercially available Star-CD code incorporating the complete intake manifold runner and cylinder into the mesh. Cylinder pressures were in good agreement with experiment indicating that wave dynamics were well captured. Comparison was also made to the measured instantaneous gas temperatures along the intake system.
Technical Paper

In-Cylinder Measurements of Residual Gas Concentration in a Spark Ignition Engine

1990-02-01
900485
The residual gas fraction prior to ignition at the vicinity of the spark plug in a single cylinder, two-valve spark ignition engine was measured with a fast-response flame ionization hydrocarbon detector. The technique in using such an instrument is reported. The measurements were made as a function of the intake manifold pressure, engine speed and intake/exhaust valve-overlap duration. Both the mean level of the residual fraction and the statistics of the cycle-to-cycle variations were obtained.
Technical Paper

Liquid Gasoline Behavior in the Engine Cylinder of a SI Engine

1994-10-01
941872
The liquid fuel entry into the cylinder and its subsequent behavior through the combustion cycle were observed by a high speed CCD camera in a transparent engine. The videos were taken with the engine firing under cold conditions in a simulated start-up process, at 1,000 RPM and intake manifold pressure of 0.5 bar. The variables examined were the injector geometry, injector type (normal and air-assisted), injection timing (open- and closed-valve injection), and injected air-to-fuel ratios. The visualization results show several important and unexpected features of the in-cylinder fuel behavior: 1) strip-atomization of the fuel film by the intake flow; 2) squeezing of fuel film between the intake valve and valve seat at valve closing to form large droplets; 3)deposition of liquid fuel as films distributed on the intake valve and head region. Some of the liquid fuel survives combustion into the next cycle.
X