Refine Your Search




Search Results

Technical Paper

04 Emission Reduction by Cylinder Wall Injection in 2-Stroke S.I. Engines

A direct injection system in which fuel was injected through the cylinder wall was developed and detailed investigation was made for the purpose of reducing short-circuit of fuel in 2-stroke engines. As a result of dynamo tests using 430cc single cylinder engine, it was found that the injector was best attached at a location as close to TDC as possible on the rear transfer port side, and that the entire amount of fuel should be injected towards the piston top surface. Emissions were worsened if fuel was injected towards the exhaust port or spark plug. Although the higher injection pressure resulted in large emissions reduction effects, it did not have a significant effect on fuel consumption. When a butterfly exhaust valve, known to be effective against irregular combustion in the light load range, was applied, it was found to lead to further reductions in HC emission and fuel consumption while also improving combustion stability.
Technical Paper

09 AVL Lean Burn Systems CCBR and CBR Light for Fuel Economy and Emission Optimization on 4-Stroke Engines

The CBR [1] (Controlled Burn Rate) is a port deactivation concept developed by AVL and is already applied in series production cars. The benefit of this concept is the low engine-out emission (CO, HC and NOx) and good fuel economy. By creating turbulent kinetic energy at the correct time and place in the combustion chamber a rapid and stable combustion occurs which allows to run the engine well above a Lambda Excess Air Ratio of 1.5. The CBR system features two different intake ports, one charge motion port and one filling port. Additionally a device for port-deactivation (slider, butterfly) is applied. At part load points and lower engine speeds the filling port is switched off. The CBR concept was now evoluted for compact engines as CCBR - with carburetor and as CBR Light - for engines with electronic fuel injection. CCBR stands for Carbureted Controlled Burn Rate.
Technical Paper

0D/3D Simulations of Combustion in Gasoline Engines Operated with Multiple Spark Plug Technology

A simulation method is presented for the analysis of combustion in spark ignition (SI) engines operated at elevated exhaust gas recirculation (EGR) level and employing multiple spark plug technology. The modeling is based on a zero-dimensional (0D) stochastic reactor model for SI engines (SI-SRM). The model is built on a probability density function (PDF) approach for turbulent reactive flows that enables for detailed chemistry consideration. Calculations were carried out for one, two, and three spark plugs. Capability of the SI-SRM to simulate engines with multiple spark plug (multiple ignitions) systems has been verified by comparison to the results from a three-dimensional (3D) computational fluid dynamics (CFD) model. Numerical simulations were carried for part load operating points with 12.5%, 20%, and 25% of EGR. At high load, the engine was operated at knock limit with 0%, and 20% of EGR and different inlet valve closure timing.
Technical Paper

100 Hour Endurance Testing of a High Output Adiabatic Diesel Engine

An advanced low heat rejection engine concept has successfully completed a 100 hour endurance test. The combustion chamber components were insulated with thermal barrier coatings. The engine components included a titanium piston, titanium headface plate, titanium cylinder liner insert, M2 steel valve guides and monolithic zirconia valve seat inserts. The tribological system was composed of a ceramic chrome oxide coated cylinder liner, chrome carbide coated piston rings and an advanced polyolester class lubricant. The top piston compression ring Included a novel design feature to provide self-cleaning of ring groove lubricant deposits to prevent ring face scuffing. The prototype test engine demonstrated 52 percent reduction in radiator heat rejection with reduced intake air aftercooling and strategic forced oil cooling.
Technical Paper

10PC20 Swash Plate Type Variable Displacement Compressor for Automotive Air Conditioners

Up to now, various compressor models for automotive air conditioners have been manufactured to answer the needs of car manufacturers for fuel economy and quietness. The 10PC20 compressor, developed for automotive air conditioners, is the world's first swash plate type compressor having a continuously variable displacement mechanism. The 10PC20 is aimed at realizing a large displacement compressor with a continuously variable displacement mechanism, which has not been achieved until today. To achieve this goal, the 10PC20 design is based on the swash plate type compressor, consisting of double-headed pistons, which is adaptable to a large displacement and has excellent rotating balance and durability. The 10PC20 changes its displacement continuously by changing the inclination of the swash plate (swash plate angle) continuously. (See photo. 1 and 2) The 10PC20 adopts two variable displacement principles.
Technical Paper

15 Combustion Characteristics of an Improved Design of a Stratified Charge Spark Ignition Engine

The characteristics of the combustion process in an improved design of a novel spark ignition engine studied by means of Computational Fluid Dynamics are presented. The engine is designed to work at low average combustion temperatures to achieve very low NOx emissions. The engine is a two-stroke, two piston in-line engine. The main combustion occurs in four combustion pre-chambers that have an annular shape with a nozzle on the side facing the cylinder. Fuel is directly injected into the pre-chambers by using high-pressure fuel injectors. A progressive burning process is expected to keep the flame inside the pre-chambers while the fast ejection of combustion products should produce effective mixing with the cold air in the cylinder. This fast dilution should guarantee a temperature drop of the combustion products thus reducing the formation of NOx via a thermal path.
Technical Paper

16 Optimisation of a Stratified Charge Strategy for a Direct Injected Two-Stroke Engine

Direct fuel injection is becoming mandatory in two-stroke S.I. engines, since it prevents one of the major problems of these engines, that is fuel loss from the exhaust port. Another important problem is combustion irregularity at light loads, due to excessive presence of residual gas in the charge, and can be solved by charge stratification. High-pressure liquid fuel injection is able to control the mixing process inside the cylinder for getting either stratified charge at partial loads or quasi-stoichiometric conditions, as it is required at full load. This paper shows the development of this solution for a small engine for moped and light scooter, using numeric and experimental tools. In order to obtain the best charge characteristics at every load and engine speed, different combustion chambers have been conceived and studied, examining the effects of combustion chamber geometry, together with injector position and injection timing
Journal Article

1D Numerical and Experimental Investigations of an Ultralean Pre-Chamber Engine

Abstract In recent years, lean-burn gasoline Spark-Ignition (SI) engines have been a major subject of investigations. With this solution, in fact, it is possible to simultaneously reduce NOx raw emissions and fuel consumption due to decreased heat losses, higher thermodynamic efficiency, and enhanced knock resistance. However, the real applicability of this technique is strongly limited by the increase in cyclic variation and the occurrence of misfire, which are typical for the combustion of homogeneous lean air/fuel mixtures. The employment of a Pre-Chamber (PC), in which the combustion begins before proceeding in the main combustion chamber, has already shown the capability of significantly extending the lean-burn limit. In this work, the potential of an ultralean PC SI engine for a decisive improvement of the thermal efficiency is presented by means of numerical and experimental analyses.
Technical Paper

2-D Visualization of Liquid Fuel injection in an Internal Combustion Engine

A sheet of laser light from a frequency-doubled Nd-YAG laser (λ = 532 nm) approximately 150 μm thick is shone through the cylinder of a single cylinder internal combustion engine. The light scattered by the fuel spray is collected through a quartz window in the cylinder and is imaged on a 100 × 100 diode array camera. The signal from the diode array is then sent to a microcomputer for background subtraction and image enhancement. The laser pulse is synchronized with the crank shaft of the engine so that a picture of the spray distribution within the engine at different times during injection and the penetration and development of the spray may be observed. The extent of the spray at different positions within the chamber is determined by varying the position and angle of the laser sheet with respect to the piston and the injector.
Technical Paper

2-D Visualization of liquid and Vapor Fuel in an I.C. Engine

A sheet of laser light from a frequency tripled Nd-YAG laser approximately 200μm thick is shone through the combustion chamber of a single cylinder, direct injection internal combustion engine. The injected decane contains exciplex—forming dopants which produce spectrally separated fluorescence from the liquid and vapor phases. The fluorescence signal is collected through a quartz window in the cylinder head and is imaged onto a diode array camera. The camera is interfaced to a microcomputer for data acquisition and processing. The laser and camera are synchronized with the crankshaft of the engine so that 2—D images of the liquid and vapor phase fuel distributions can be obtained at different times during the engine cycle. Results are presented at 600, 1200 and 1800 rpm, and from the beginning to just after the end of injection. The liquid fuel traverses the cylinder in a straight line in the form of a narrow cone, but does not reach the far wall in the plane of the laser sheet.
Technical Paper

2-Stroke Externally Scavenged Engines for Range Extender Applications

In this work, the authors assess the potential of the 2-stroke concept applied to Range Extender engines, proposing 3 different configurations: 1) Supercharged, Compression Ignition; 2) Turbocharged, Compression Ignition; 3) Supercharged, Gasoline Direct Injection. All the engines feature a single power cylinder of 0.49l, external air feed by piston pump and an innovative induction system. The scavenging is of the Loop type, without poppet valves, and with a 4-stroke like lubrication system (no crankcase pump). Engine design has been supported by CFD simulations, both 1D (engine cycle analysis) and 3D (scavenging, injection and combustion calculations). All the numerical models used in the study are calibrated against experiments, carried out on engines as similar as possible to the proposed ones.
Journal Article

2-Stroke High Speed Diesel Engines for Light Aircraft

The paper describes a numerical study, supported by experiments, on light aircraft 2-Stroke Direct Injected Diesel engines, typically rated up to 110 kW (corresponding to about 150 imperial HP). The engines must be as light as possible and they are to be directly coupled to the propeller, without reduction drive. The ensuing main design constraints are: i) in-cylinder peak pressure as low as possible (typically, no more than 120 bar); ii) maximum rotational speed limited to 2600 rpm. As far as exhaust emissions are concerned, piston aircraft engines remain unregulated but lack of visible smoke is a customer requirement, so that a value of 1 is assumed as maximum Smoke number. For the reasons clarified in the paper, only three cylinder in line engines are investigated. Reference is made to two types of scavenging and combustion systems, designed by the authors with the assistance of state-of-the-art CFD tools and described in detail in a parallel paper.
Technical Paper

21 Development of a Small Displacement Gasoline Direct Injection Engine

We have developed a small-displacement gasoline direct-injection engine (1.3L). Gasoline direct-injection engines rely on ultra-lean stratified combustion to deliver significantly better fuel economy, and are already used in many practical applications. When gasoline direct-injection is applied to a small-displacement engine, however, the amount of wall wetting of fuel on the piston surface will increase because the traveled length of the fuel spray is short. This may result in problems such as smoke production, high emissions of unburned HC, and poor combustion efficiency.
Journal Article

25cc HCCI Engine Fuelled with DEE

This paper describes the set-up and testing of a single cylinder 25cc, air cooled, 4-stroke Spark Ignition (SI) engine converted to run in Homogeneous Charge Compression Ignition (HCCI) mode with the aid of various combustion control systems. The combustion control systems were investigated regarding their effects on combustion stability and heat release phasing. Engine operation was compared with unique findings from previous work done on a very small 2-stroke HCCI engine. HCCI engine operation was possible between 1000 - 4000 rpm when using Diethyl Ether (DEE) as the test fuel. Maximum operational fuel-air equivalence ratio (Φ) was 0.75 when operating without Exhaust Gas Recirculation (EGR). This relatively high equivalence ratio was attainable due to thermal gradients induced by the high surface area to volume ratio of the small engine combustion chamber, resulting in high chamber heat transfer.
Technical Paper

26 Development of “BF-Coat” for Snowmobile Piston

The pistons in a snowmobile engine are subjected to severe temperature conditions not only because snowmobiles are operated in extremely cold temperatures but also because the engine has a high output per unit volume of approximately 150kW/liter. The temperature of the piston top may go from -40°C (when a cold engine is started) to 400°C or higher (when the engine is running at full load). When the piston and cylinder inner wall are cold, the performance of the lubricating oil drops; when they are hot, scuffing may be produced by problems such as tearing of the oil film between the piston and cylinder. When the engine is run at full load for a long time, moreover, the piston is subjected to prolonged high-temperature use, which is conducive to the production of piston boss hole abrasion and ring groove adhesive wear.
Technical Paper

3 - Valve Stratified Charge Engines: Evolvement, Analysis and Progression

A historical review of the patents and literature pertaining to 3-valve stratified charge engines is presented in this paper. This very old invention appears to be a practical approach for the “clean engine” being sought for vehicular use since it has the intrinsic capability of simultaneously giving good fuel economy and producing minimal objectionable exhaust emissions. The prime requisites of this engine are a rich prechamber charge and a very lean main chamber charge regardless of prechamber volume, nozzle diameter, valving and spark plug location. Fuel-air equivalence ratios of the charges in the two combustion chambers are significantly important in order to achieve the proper optimization. These ratios should be about 15% rich for the prechamber and 15 to 30% lean for the main chamber at the moment of ignition.
Technical Paper

3 D CAD/CAM Design of a 4 Valve 4 Cylinder Aluminum Head

Due to the requirements of the market, engine manufacturers and their suppliers must develop new products in a short lead time, with high quality, high reliability and lowest possible costs. A method to obtain a short lead time for a complicated aluminum cylinder head is the design in 3 D CAD and the use of simultaneous engineering. A practical example shows the design of a 16-valve cylinder head in 3 D CAD (Catia). The cylinder head supplier received a CAD-tape with the main dimensions such as valve locations, shape of the combustion chamber and ports and location of the bolts. A design team completed the cylinder head design in 3 D CAD in consideration of the needs for foundry technology, casting tool design and machining of the part. Special casting tools for the prototyping were manufactured parallel to the cylinder head design.
Technical Paper

3 Load Cell Tumble Meter Development

This paper will describe the development of the 3-load cell tumble meter. This is a new method for measuring the tumble component of in-cylinder mixture motion. In-cylinder mixture motion is an important parameter for understanding and improving combustion stability of piston engines.
Technical Paper

3-D CFD Analysis of the Combustion Process in a DI Diesel Engine using a Flamelet Model

A 3-dimensional numerical study has been conducted investigating the combustion process in a VW 1.9l TDI Diesel engine. Simulations were performed modeling the spray injection of a 5-hole Diesel injector in a pressure chamber. A graphical methodology was utilized to match the spray resulting from the widely used Discrete Droplet Spray model to pressure chamber spray images. Satisfactory agreement has been obtained regarding the simulated and experimental spray penetration and cone angles. Thereafter, the combustion process in the engine was simulated. Using engine measurements to initialize the combustion chamber conditions, the compression stroke, the spray injection and the combustion simulation was performed. The novel RTZF two-zone flamelet combustion model was used for the combustion simulation and was tested for partial load operating conditions. An objective analysis of the model is presented including the results of a numerical parameter study.
Technical Paper

3-D Computations of Premixed-Charge Natural Gas Combustion in Rotary Engines

A three-dimensional model for premixed- charge naturally-aspirated rotary engine combustion is used to identify combustion chamber geometries that could lead to increased indicated efficiency for a lean (equivalence ratio =0.75) natural gas/air mixture. Computations were made at two rpms (1800 and 3600) and two loads (approximately 345 Kpa and 620 Kpa indicated mean effective pressure). Six configurations were studied. The configuration that gave the highest indicated efficiency has a leading pocket with a leading deep recess, two spark plugs located circumferentially on the symmetry plane (one after the minor axis and the other before), a compression ratio of 9.5, and an anti-quench feature on the trailing flank.