Refine Your Search

Topic

Search Results

Standard

10 Megabit/sec Network Configuration Digital Time Division Command/Response Multiplex Data Bus

2013-04-29
HISTORICAL
AS5652
This SAE Aerospace Standard (AS) contains requirements for a digital time division command/response multiplex data bus, for use in systems integration that is functionally similar to MIL-STD-1553B with Notice 2 but with a star topology and some deleted functionality. Even with the use of this document, differences may exist between multiplex data buses in different system applications due to particular application requirements and the options allowed in this document. The system designer must recognize this fact and design the multiplex bus controller (BC) hardware and software to accommodate such differences. These designer selected options must exist to allow the necessary flexibility in the design of specific multiplex systems in order to provide for the control mechanism, architectural redundancy, degradation concept, and traffic patterns peculiar to the specific application requirements.
Standard

10 Megabit/sec Network Configuration Digital Time Division Command/Response Multiplex Data Bus

2018-01-18
CURRENT
AS5652A
This SAE Aerospace Standard (AS) contains requirements for a digital time division command/response multiplex data bus, for use in systems integration that is functionally similar to MIL-STD-1553B with Notice 2 but with a star topology and some deleted functionality. Even with the use of this document, differences may exist between multiplex data buses in different system applications due to particular application requirements and the options allowed in this document. The system designer must recognize this fact and design the multiplex bus controller (BC) hardware and software to accommodate such differences. These designer selected options must exist to allow the necessary flexibility in the design of specific multiplex systems in order to provide for the control mechanism, architectural redundancy, degradation concept, and traffic patterns peculiar to the specific application requirements.
Standard

Data Word and Message Formats

2011-11-15
HISTORICAL
AS15532
The emphasis in this standard is the development of data word and message formats for AS15531 or MIL-STD-1553 data bus applications. This standard is intended as a guide for the designer to identify standard data words and messages for use in avionics systems and subsystems. These standard words and messages, as well as the documentation format for interface control document (ICD) sheets, provide the basis for defining 15531/1553 systems. Also provided in this standard is the method for developing additional data word formats and messages that may be required by a particular system but are not covered by the formats provided herein. It is essential that any new word formats or message formats that are developed for a 15531/1553 application follow the fundamental guidelines established in this standard in order to ease future standardization of these words and messages. The standard word formats presented represent a composite result of studies conducted by the U.S.
Standard

Data Word and Message Formats

2016-10-21
CURRENT
AS15532A
The emphasis in this standard is the development of data word and message formats for AS15531 or MIL-STD-1553 data bus applications. This standard is intended as a guide for the designer to identify standard data words and messages for use in avionics systems and subsystems. These standard words and messages, as well as the documentation format for interface control document (ICD) sheets, provide the basis for defining 15531/1553 systems. Also provided in this standard is the method for developing additional data word formats and messages that may be required by a particular system but are not covered by the formats provided herein. It is essential that any new word formats or message formats that are developed for a 15531/1553 application follow the fundamental guidelines established in this standard in order to ease future standardization of these words and messages. The standard word formats presented represent a composite result of studies conducted by the U.S.
Standard

Digital Time Division Command/Response Multiplex Data Bus

2017-03-21
CURRENT
AS15531A
This SAE Aerospace Standard (AS) contains requirements for a digital time division command/response multiplex data bus, for use in systems integration, that is functionally equivalent to MIL-STD-1553B with Notice 2. Even with the use of this document, differences may exist between multiplex data buses in different system applications due to particular application requirements and the options allowed in this document. The system designer must recognize this fact and design the multiplex bus controller (BC) hardware and software to accommodate such differences. These designer selected options must exist to allow the necessary flexibility in the design of specific multiplex systems in order to provide for the control mechanism, architectural redundancy, degradation concept, and traffic patterns peculiar to the specific application requirements.
Standard

Digital Time Division Command/Response Multiplex Data Bus

2011-11-15
HISTORICAL
AS15531
This SAE Aerospace Standard (AS) contains requirements for a digital time division command/response multiplex data bus, for use in systems integration, that is functionally equivalent to MIL-STD-1553B with Notice 2. Even with the use of this document, differences may exist between multiplex data buses in different system applications due to particular application requirements and the options allowed in this document. The system designer must recognize this fact and design the multiplex bus controller (BC) hardware and software to accommodate such differences. These designer selected options must exist to allow the necessary flexibility in the design of specific multiplex systems in order to provide for the control mechanism, architectural redundancy, degradation concept, and traffic patterns peculiar to the specific application requirements.
Standard

Handbook for the Digital Time Division Command/Response Multiplex Data Bus Test Plans

2016-10-21
CURRENT
AIR4295A
This document contains guidance for using SAE publications, AS4112 through AS4117 (MIL-STD-1553 related Test Plans). Included herein are the referenced test plan paragraphs numbers and titles, the purpose of the test, the associated MIL-STD-1553 paragraph, commentary concerning test methods and rationale, and instrumentation requirements.
Standard

High Performance 1553 Research and Development

2016-10-21
CURRENT
AIR5683A
MIL-STD-1553 establishes requirements for digital command/response time division multiplexing (TDM) techniques on military vehicles, especially aircraft. The existing MIL-STD-1553 network operates at a bit rate of 1 Mbps and is limited by the protocol to a maximum data payload capacity of approximately 700 kilobits per second. The limited capacity of MIL-STD-1553 buses coupled with emerging data rich applications for avionics platforms plus the expense involved with changing or adding wires to thousands of aircraft in the fleet has driven the need for expanding the data carrying capacity of the existing MIL-STD-1553 infrastructure.
Standard

High Performance 1553 Research and Development

2011-11-15
HISTORICAL
AIR5683
MIL-STD-1553 establishes requirements for digital command/response time division multiplexing (TDM) techniques on military vehicles, especially aircraft. The existing MIL-STD-1553 network operates at a bit rate of 1 Mbps and is limited by the protocol to a maximum data payload capacity of approximately 700 kilobits per second. The limited capacity of MIL-STD-1553 buses coupled with emerging data rich applications for avionics platforms plus the expense involved with changing or adding wires to thousands of aircraft in the fleet has driven the need for expanding the data carrying capacity of the existing MIL-STD-1553 infrastructure.
Standard

IEEE-1394b Interface Requirements for Military and Aerospace Vehicle Applications

2016-04-04
CURRENT
AS5643B
IEEE-1394b, Interface Requirements for Military and Aerospace Vehicle Applications, establishes the requirements for the use of IEEE Std 1394™-2008 as a data bus network in military and aerospace vehicles. The portion of IEEE Std 1394™-2008 standard used by AS5643 is referred to as IEEE-1394 Beta (formerly referred to as IEEE-1394b.) It defines the concept of operations and information flow on the network. As discussed in 1.4, this specification contains extensions/restrictions to “off-the-shelf” IEEE-1394 standards and assumes the reader already has a working knowledge of IEEE-1394. This document is referred to as the “base” specification, containing the generic requirements that specify data bus characteristics, data formats, and node operation.
Standard

IEEE-1394b Interface Requirements for Military and Aerospace Vehicle Applications

2013-04-29
HISTORICAL
AS5643A
This SAE Aerospace Standard (AS) establishes the requirements for the use of IEEE-1394b as a data bus network in military and aerospace vehicles. It defines the concept of operations and information flow on the network. As discussed in 1.4, this specification contains extensions/restrictions to “off-the-shelf” IEEE-1394 standards, and assumes that the reader already has a working knowledge of IEEE-1394. This document is referred to as the “base” specification, containing the generic requirements that specify data bus characteristics, data formats and node operation. It is important to note that this specification is not stand-alone - several requirements provide only example implementations and delegate the actual implementation to be specified by the network architect/integrator for a particular vehicle application. This information is typically contained in a “network profile” slash sheet that is subservient to this base specification.
Standard

Linear Token Passing Multiplex Data Bus

2017-02-21
CURRENT
AS4074B
This standard specifies the characteristics of the SAE Linear Token Passing Bus (LTPB) Interface Unit. The LTPB provides a high reliability, high bandwidth, low latency serial interconnection network suitable for utilization in real time military and commercial applications. Multiple redundant data paths can be implemented to enhance reliability and survivability in those applications which require these attributes. The token passing and data exchange protocols are optimized to provide low latency and fast failure detection and correction. Physical configurations with bus lengths up to 1000 m can be accommodated.
Standard

Linear Token Passing Multiplex Data Bus

1993-12-01
HISTORICAL
AS4074
This standard specifies the characteristics of the SAE Linear Token Passing Bus (LTPB) Interface Unit. The LTPB provides a high reliability, high bandwidth, low latency serial interconnection network suitable for utilization in real time military and commercial applications. Multiple redundant data paths can be implemented to enhance reliability and survivability in those applications which require these attributes. The token passing and data exchange protocols are optimized to provide low latency and fast failure detection and correction. Physical configurations with bus lengths up to 1000 m can be accommodated.
Standard

MODULAR AVIONICS BACKPLANE FUNCTIONAL REQUIREMENTS AND CONSENSUS ITEMS (MABFRACI)

2006-07-25
HISTORICAL
AIR4980
The original purpose of this document was to establish interface requirements for modular avionics backplanes to be prototyped up to 1995. The document was issued as ARD50011 in September 1992. It is being reissued as an SAE Aerospace Information Report (AIR) in order to: a Preserve the requirements for more than 2 years b Support design of retrofits and avionics systems to be fielded in the years 1995 to 2000 c Provide a baseline for updating the requirements of future integrated systems These requirements were and are intended to promote standardization of modular avionic backplane interfaces. These requirements have been driven predominantly, but not exclusively, by aerospace type military platforms.
Standard

Modular Avionics Backplane Functional Requirements and Consensus Items (MABFRACI)

2012-05-03
CURRENT
AIR4980A
The original purpose of this document was to establish interface requirements for modular avionics backplanes to be prototyped up to 1995. The document was issued as ARD50011 in September 1992. It is being reissued as an SAE Aerospace Information Report (AIR) in order to: a Preserve the requirements for more than 2 years b Support design of retrofits and avionics systems to be fielded in the years 1995 to 2000 c Provide a baseline for updating the requirements of future integrated systems These requirements were and are intended to promote standardization of modular avionic backplane interfaces. These requirements have been driven predominantly, but not exclusively, by aerospace type military platforms.
Standard

OPTICAL IMPLEMENTATION RELATING TO THE HIGH SPEED RING BUS (HSRB) STANDARD

1995-01-01
HISTORICAL
AS4075/1
This SAE Aerospace Standard (AS) has been prepared by the Ring Implementation Task Group of the SAE AS-2 Committee. It is intended as a companion document to the SAE AS4075 High Speed Ring Bus Standard. While the Standard is intended to provide as complete a description as possible of an HSRB implementation, certain parameters are system-dependent and evolutionary. This document contains those parameters. The text through Table 1 is intended to provide definitions and descriptions applicable to all applications. Table 2 contains specific parameter values for one or more implementations. This table will change as new systems are implemented or new HSRB speed options are defined.
Standard

Optical Implementation Relating to the High Speed Ring Bus (HSRB) Standard

2012-05-03
CURRENT
AS4075/1A
This SAE Aerospace Standard (AS) has been prepared by the Ring Implementation Task Group of the SAE AS-2 Committee. It is intended as a companion document to the SAE AS4075 High Speed Ring Bus Standard. While the Standard is intended to provide as complete a description as possible of an HSRB implementation, certain parameters are system-dependent and evolutionary. This document contains those parameters. The text through Table 1 is intended to provide definitions and descriptions applicable to all applications. Table 2 contains specific parameter values for one or more implementations. This table will change as new systems are implemented or new HSRB speed options are defined.
Standard

PI-BUS

2006-07-25
HISTORICAL
AS4710
This document is a result of the desire for interoperability of modules on a Pi-Bus. This standard is a stand alone document that used the Very High Speed Integrated Circuit (VHSIC) Phase 2, Interoperability Standard PI-Bus Specification 2.2, as a starting point.
Standard

PI-Bus

2012-05-03
CURRENT
AS4710A
This document is a result of the desire for interoperability of modules on a Pi-Bus. This standard is a stand alone document that used the Very High Speed Integrated Circuit (VHSIC) Phase 2, Interoperability Standard Pi-Bus Specification 2.2, as a starting point.
X