Refine Your Search

Topic

Author

Affiliation

Search Results

Standard

(R) Truck And Bus Grade Parking Performance Requirements

2004-01-22
HISTORICAL
J293_200401
This SAE Recommended Practice establishes minimum performance requirements for trucks, buses, truck-tractors, full trailers, and semitrailers with gross vehicle weight ratings greater than 4540 kg (10 000 lb) with regard to: a. Vehicle classification b. Vehicle load c. Percent grade d. Application force
Technical Paper

110 Ton Payload on Two Axles with Hydro-Mechanical Drive

1966-02-01
660237
Late developments in tires and in lightweight, high horsepower engines and transmissions have enabled the earthmoving and mining industry equipment manufacturers to design and produce several types of preproduction 100-ton capacity trucks. A straight-forward approach to the design of a 110-ton end dump truck on two axles with a hydro-mechanical drive was followed by KW-Dart Truck Co. to produce a low cost per ton-mile vehicle.
Technical Paper

120VAC Power Inverters

1983-02-01
830131
Inverters are solid state devices which change DC to 120VAC electricity. They are sufficiently rugged and reliable to make them practical for use on utility vehicles for operating thumpers, tools, lights and induction motor loads. The SCR type rather than the transistor type inverter is generally required for inductive and reactive loads. Static inverters operate from battery input. They provide power without running an engine, but are limited by battery capacity so work best in intermittent load applications. Dynamic inverters operate from alternator input and will handle continuous loads to 7200 watts with truck engine running.
Standard

15 Pole Connector Between Towing Vehicles and Trailers with 12 Volt Nominal Supply

2018-04-15
CURRENT
J2691_201804
This SAE standard establishes the minimum construction and performance requirements for a 15 Pole Connector Between Towing Vehicles and Trailers, for trucks, trailers, and dollies in conjunction with SAE J2742. The connector accommodates both power and ISO 11992-1 signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
Technical Paper

1978 U. S. Automotive Service Market: How Large is Large?

1981-02-01
810054
The size of the 1978 automotive service market is the total dollars spent on car and truck repair and maintenance in 1978. The 1978 personal-use automotive service market is the retail dollars spent in 1978 on repair and maintenance for cars and trucks used primarily for personal transportation. Service market estimates in this report do not include body repair parts and body repairs. Bureau of Economic Analysis data indicate a personal-use service market, excluding do-it-yourself (DIY) service, of $36 billion. A similar estimate made by General Motors Research Laboratories, based on a large national survey of actual consumer expenditures, is $ 37 billion. The personal-use automotive service market, excluding DIY, is roughly 3/4's the size of the total automotive service market, based on data from the Motor and Equipment Manufacturers Association and Frost & Sullivan, Inc.
Technical Paper

1978 to 1980 Ford On-Road Fuel Economy

1981-02-01
810383
Since 1978 Ford Motor Company has been surveying the fuel economy of employes who lease new light duty vehicles from the Company. Winter and summer survey data for the three years are analyzed and compared. Car results show a significant and steady increase in average on-road fuel economy over the three year period. The percent differential between EPA measured and actual on-road fuel economy has lessened substantially since 1978. Furthermore, the percent difference between EPA and on-road is essentially constant over the range of EPA values for each of the three years. Limited fuel economy results for 1980 trucks are also discussed.
Technical Paper

1983 Ford Ranger Truck HSLA Steel Wheel

1982-02-01
820019
The demand for improved fuel economy in both cars and trucks has emphasized the need for lighter weight components. The application of high strength steel to wheels, both rim and disc, represents a significant opportunity for the automotive industry. This paper discusses the Ranger HSLA wheel program that achieved a 9.7 lbs. per vehicle weight savings relative to a plain carbon steel wheel of the same design. It describes the Ranger wheel specifications, the material selection, the metallurgical considerations of applying HSLA to wheels, and HSLA arc and flash butt welding. The Ranger wheel design and the development of the manufacturing process is discussed, including design modifications to accommodate the lighter gage. The results demonstrate that wheels can be successfully manufactured from low sulfur 60XK HSLA steel in a conventional high volume process (stamped disc and rolled rim) to meet all wheel performance requirements and achieve a significant weight reduction.
Technical Paper

1983 Ranger Pickup

1981-11-01
811270
The Ford Ranger will be a domestically built, small pickup truck engineered to many design objectives typical of a fullsize pickup, yet with four cylinder engine fuel efficiency. Ranger is a full-function on-and-off road pickup truck with a uniquely smooth ride and a capacity to carry up to a 725.7 kg. (1600 lb.) payload. The truck features a three passenger body-on-frame cab and a double wall pickup box with provision for 1.2m × 2.4m (4 ft. × 8 ft.) sheets of construction material. Featured in this comprehensive paper are the engineering highlights and innovations contributing to the accomplishment of these Small Truck objectives.
Technical Paper

1988 Chevrolet/GMC Full-Size Pickup Truck Aerodynamics

1987-11-01
872274
This paper is a summary of the aerodynamic development of the 1988 Chevrolet and GMC pickup truck. Comprehensive drag reduction work was performed with clay models from the original concept through the detailed full-scale model. In addition, the aerodynamic development included wind rush noise reduction, optimization of engine cooling air flow, and body surface pressures for HVAC performance.
Technical Paper

1996 GM 7.4 Liter Engine Upgrade

1996-02-01
960012
General Motors Powertrain Division has developed the next generation big block V8 engine for introduction in the 1996 model year. In addition to meeting tighter emission and on-board diagnostic legislation, this engine evolved to meet both customer requirements and competitive challenges. Starting with the proven dependability of the time tested big block V8, goals were set to substantially increase the power, torque, fuel economy and overall pleaseability of GM's large load capacity gasoline engine. The need for this new engine to meet packaging requirements in many vehicle platforms, both truck and OEM, as well as a requirement for minimal additional heat rejection over the engine being replaced, placed additional constraints on the design.
Technical Paper

1997 Propane Vehicle Challenge Design Strategy -University of Waterloo

1998-02-23
980491
The conversion design strategy, and emissions and performance results for a dedicated propane, vapour injected, 1995 Dodge Dakota truck are reported. Data is obtained from the University of Waterloo entry in the 1997 Propane Vehicle Challenge. A key feature of the design strategy is its focus on testing and emissions while preserving low engine speed power for drivability. Major changes to the Dakota truck included the following: installation of a custom shaped fuel tank, inclusion of a fuel temperature control module, addition of a vaporizer and a fuel delivery metering unit, installation of a custom vapour distribution manifold, addition of an equivalence ratio electronic controller, inclusion of a wide range oxygen sensor, addition of an exhaust gas recirculation cooler and installation of thermal insulation on the exhaust system. A competition provided natural gas catalyst was used.
Technical Paper

2-Stroke Engine Options for Automotive Use: A Fundamental Comparison of Different Potential Scavenging Arrangements for Medium-Duty Truck Applications

2019-01-15
2019-01-0071
The work presented here seeks to compare different means of providing scavenging systems for an automotive 2-stroke engine. It follows on from previous work solely investigating uniflow scavenging systems, and aims to provide context for the results discovered there as well as to assess the benefits of a new scavenging system: the reverse-uniflow sleeve-valve. For the study the general performance of the engine was taken to be suitable to power a medium-duty truck, and all of the concepts discussed here were compared in terms of indicated fuel consumption for the same cylinder swept volume using a one-dimensional engine simulation package. In order to investigate the sleeve-valve designs layout drawings and analysis of the Rolls-Royce Crecy-type sleeve had to be undertaken.
Technical Paper

2003 Chevrolet Kodiak and GMC TopKick Airbag Sensing System Development

2002-11-18
2002-01-3101
Airbag systems have been part of passenger car and truck programs since the mid-1980's. However, systems designed for medium and heavy duty truck applications are relatively new. The release of airbag systems for medium duty truck has provided some unique challenges, especially for the airbag sensing systems. Because of the many commercial applications within the medium duty market, the diversity of the sensing environments must be considered when designing and calibrating the airbag sensing system. The 2003 Chevrolet Kodiak and GMC TopKick airbag sensing development included significant work, not only on the development of airbag deployment events but also non-deployment events – events which do not require the airbag to deploy. This paper describes the process used to develop the airbag sensing system deployment events and non-deployment event used in the airbag sensing system calibration.
Technical Paper

21 Cubic Yard 580 PAY® Loader

1975-02-01
750817
To effectively utilize larger trucks (85 ton and up), open-pit mines and quarries need a larger front-end loader with high reliability and performance. This paper describes the design approach and tests carried out to design 21 cubic yard 580 PAY® loader to meet these requirements. Long fatigue life of structures was obtained by use of full penetration welds. New concept for power control was designed to effectively distribute power between hydraulics and drive train. Spring applied - pressure released brakes were designed into the axle. Tests were carried out in our laboratory and proving grounds to determine performance and reliability.
Technical Paper

21st Century Truck Initiative Support to the Army Transformation Process

2001-11-12
2001-01-2772
This paper describes how the 21st Century Truck Initiative supports the U.S. Army's transformation to a lighter, more mobile force to meet future National Security needs while helping commercial users develop economically viable technologies to lower costs and reduce demands for foreign fuel. The paper will also show how the National Automotive Center's systems engineering approach supports the selection of emerging technologies to support the transformation process.
Book

2nd AVL International Commercial Powertrain Conference Proceedings (2003)

2003-01-01
The AVL International Commercial Powertrain Conference is the premier forum for truck, agricultural and construction equipment manufacturers to discuss powertrain technology challenges and solutions across their industries. The topics of the conference, which happens every two years, cover all five elements of a modern powertrain: engine, transmission, electric motor, battery and the electronic control which are used basically the same way in the quest for optimal efficiency and environmental compatibility. This event offers a unique opportunity for highly regarded professionals to address the synergy effects and distinctive characteristics of commercial vehicles, agricultural tractors and non-road vehicles, and industrial machinery. These proceedings include 21 papers from four categories of sessions: Setting the Scene; Different Worlds-Different Technologies; Engineering Partnerships and What Next in Development and Production.
Technical Paper

3D PIV in Wind Tunnel Applications: Measurements of a Truck Wake

1999-10-19
1999-01-5600
Three-component Particle Image Velocimetry (3D PIV) is a fluid velocity measurement technique that has evolved from the laboratory to become a method appropriate for use in large-scale wind tunnel testing. An example application of 3D PIV in a wind tunnel test is described. The PIV technique was applied to characterize the wake of The Ground Transportation System (GTS) model developed for the Department of Energy (DOE) Heavy Vehicle Drag Reduction (HVDR) program. The test was performed in the Ames/Army 7×10 foot wind tunnel. The objective of the PIV measurements was to validate the HVDR computational fluid dynamics code. The PIV method and PIV system are described. Sample truck wake data with and without boattail attachments are shown. 3D PIV system successfully captured the effects of the boattails on the truck wake.
Book

3rd AVL International Commercial Powertrain Conference Proceedings (2005)

2005-01-01
The AVL International Commercial Powertrain Conference is the premier forum for truck, agricultural and construction equipment manufacturers to discuss powertrain technology challenges and solutions across their industries. The topics of the conference, which happens every two years, cover all five elements of a modern powertrain: engine, transmission, electric motor, battery and the electronic control which are used basically the same way in the quest for optimal efficiency and environmental compatibility. This event offers a unique opportunity for highly regarded professionals to address the synergy effects and distinctive characteristics of commercial vehicles, agricultural tractors and non-road vehicles, and industrial machinery.
Journal Article

4 L Light Duty LPG Engine Evaluated for Heavy Duty Application

2010-05-05
2010-01-1463
Many applications of liquefied petroleum gas (LPG) to commercial vehicles have used their corresponding diesel engine counterparts for their basic architecture. Here a review is made of the application to commercial vehicle operation of a robust 4 L, light-duty, 6-cylinder in-line engine produced by Ford Australia on a unique long-term production line. Since 2000 it has had a dedicated LPG pick-up truck and cab-chassis variant. A sequence of research programs has focused on optimizing this engine for low carbon dioxide (CO₂) emissions. Best results (from steady state engine maps) suggest reductions in CO₂ emissions of over 30% are possible in New European Drive Cycle (NEDC) light-duty tests compared with the base gasoline engine counterpart. This has been achieved through increasing compression ratio to 12, running lean burn (to λ = 1.6) and careful study (through CFD and bench tests) of the injected LPG-air mixing system.
Technical Paper

4 x 4 Highway Tractor Concepts

1972-02-01
720901
Two new 4 X 4 drivetrain systems have been developed for highway tractors that are used to pull multiple trailer combinations. The first one is a 4 X 2 that automatically becomes a 4 X 4 when conditions exist that require 4 X 4 operation. The second one is a full-time 4 X 4 that proportions the drive torque 36% to the front axle and 64% to the rear axle. A unique front driving steering axle has also been developed that permits a 4 X 4 system to be installed in a standard 4 X 2 truck. There is no need to relocate any major components to make space available for a front driving steering axle.
X