Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

The Characterization of the Hydrocarbon and Sulfate Fractions of Diesel Particulate Matter

1978-02-01
780111
One of the more objectionable aspects of the use of diesel engines has been the emission of particulate matter. A literature review of combustion flames, theoretical calculations and dilution tunnel experiments have been performed to elucidate the chemical and physical processes involved in the formation of diesel particulate matter. A comparative dilution tunnel study of diluted and undiluted total particulate data provided evidence supporting calculations that indicate hydro-carbon condensation should occur in the tunnel at low exhaust temperatures. The sample collection system for the measurement of total particulate matter and soluble sulfate in particulate matter on the EPA 13 mode cycle is presented. A method to correct for hydrocarbon interferences in the EPA barium chloranilate method for the determination of sulfate in particulate matter is discussed.
Technical Paper

The Effect of Fuel Injection Rate and Timing on the Physical, Chemical, and Biological Character of Particulate Emissions from a Direct Injection Diesel

1981-09-01
810996
Formation of pollutants from diesel combustion and methods for their control have been reviewed. Of these methods, fuel injection rate and timing were selected for a parametric study relative to total particulate, soluble organic fraction (SOF), sulfates, solids and NO and NO2 emissions from a heavy-duty, turbocharged, after-cooled, direct-injection (DI) diesel. Chemical analyses of the SOF were performed at selected engine conditions to determine the effects of injection rate and timing on each of the eight chemical subfractions comprising the SOF. Biological character of the SOF was determined using the Ames Salmonella/microsome bioassay.
Technical Paper

The Measurement and Sampling of Controlled Regeneration Emissions from a Diesel Wall-Flow Particulate Trap

1991-02-01
910606
A diesel exhaust sampling system was specially designed to measure and collect emissions from a ceramic wall-flow particulate trap during periods of controlled electric regeneration with the exhaust emissions bypassing the trap. This resulted in the regeneration emissions being independent of those produced during either baseline (no control) or trap (exhaust filtration) sampling conditions. This system provided data regarding the physical, chemical, and biological character of regeneration emissions relative to baseline and trap emissions. Selected emission levels measured continuously during the regeneration process were also used to define the particle combustion process in the trap core. Variations in hydrocarbons (HC), oxides of nitrogen (NOx), and particulate volume concentrations during the regeneration process were used to define four stages of the combustion process: preheat; combustion wave formation; combustion wave propagation; and combustion wave extinction.
Technical Paper

The Physical and Chemical Character of Diesel Particulate Emissions-Measurement Techniques and Fundamental Considerations

1978-02-01
780108
The techniques used to characterize the chemical and physical nature of particulates in diesel exhaust emissions are reviewed. The emphasis is on understanding the broader aspects of the fundamental nature of not only diesel particulates, but particulate systems in general. Consideration is given to the special nature of particulates which make them significant pollutants and to the relative place of the diesel in the formation of man-made particles. The underlying combustion processes leading to carbon and sulfur based particulates are reviewed. The important variables in steps of the combustion processes which lead to particulate formation are considered, as well as major fuel and engine factors. Collection methods are examined with examples given from current diesel dilution techniques. Probes, sampling lines, and instrumentation are considered.
X