Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Computer Heat Transfer and Hydrocarbon Adsorption Model for Predicting Diesel Particulate Emissions in Dilution Tunnels

The prediction of particulate concentrations in dlesel exhaust diluted in a dilution tunnel has been achieved using a computer model. The particulate collection filter temperature, soluble organic fraction (SOF) and solids fraction (SOL) of diesel particulate matter were predicted based on exhaust system and dilution tunnel variables that could be measured on a real-time basis. The SOF was assumed to be formed by adsorption of gaseous hydrocarbons onto the solids fraction. The accuracy of the model was determined by comparison to experimentally measured values. The model was able to predict SOF concentrations within 35%, filter temperatures within 3°G, and particulate (SOF + SOL) concentrations within 25% of measured values. A parametric study was conducted using the developed model; and improved test procedures, dilution tunnel dimensions, and federal testing guidelines were suggested.
Technical Paper

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within a 2007 OEM aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). Having a better understanding of the passive NO₂ oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Being able to model the passive oxidation of accumulated PM in the CPF is critical to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine.
Technical Paper

Cooperative Evaluation of Techniques for Measuring Nitric Oxide and Carbon Monoxide (Phase IV Tests)

This is the fourth in a series of tests conducted as a Coordinating Research Council cooperative program to evaluate the measurement methods used to analyze diesel exhaust gas constituents. A multi-cylinder engine was circulated to 15 participants who measured emissions at three engine conditions. All 15 participants measured nitric oxide and carbon monoxide with several laboratories measuring nitric oxide by both NDIR (Non-Dispersive Infrared) and CHEMI (Chemiluminescence). Some participants also measured carbon dioxide, nitrogen dioxide, oxygen, and unknown span gases. The test results are compared with the Phase III cooperative tests which involved simultaneous measurement of emissions by participants. The precision of the results was poorer in Phase IV than Phase III.
Technical Paper

Cooperative Study of Heavy Duty Diesel Emission Measurement Methods

A cooperative test program was conducted by the CRC-APRAC CAPI-1-64 Composition of Diesel Exhaust Program Group to evaluate the technical aspects of a proposed EPA recommended Heavy Duty Diesel Emission Measurement and Test Procedure. The proposed changes affected the sampling configurations and the types of instruments used. Six participants studied the effects of a number of variables on the proposed changes and evaluated some alternative systems that included both CHEMI and NDIR instruments. The tests were conducted at one site using a multi-cylinder engine operating on the 13-Mode Cycle. Equivalency of systems was demonstrated and the best performance was obtained with a special NDIR system.
Technical Paper

Variability in Particle Emission Measurements in the Heavy Duty Transient Test

A study of the sources of variability in particulate measurements using the Heavy-Duty Transient Test (40 CFR Subpart N) has been conducted. It consisted of several phases: a critical examination of the test procedures, visits to representative facilities to compare and contrast facility designs and test procedures, and development of a simplified model of the systems and procedures used for the Heavy-Duty Transient Test. Some of the sources of variability include; thermophoretic deposition of particulate matter onto walls of the sampling system followed by subsequent reentrainment in an unpredictable manner, the influence of dilution and cooling upon the soluble organic fraction, inconsistency among laboratories in the engine and dynamometer control strategies, and errors in measurements of flows into and out of the secondary dilution tunnel.