Refine Your Search

Topic

Search Results

Standard

Aero-Capable Ground Vehicle Impact Testing

2022-03-08
WIP
J3276
This document provides recommended practices for impact testing of ground vehicle that are also aero-capable. The scope characterizes recommended impact testing taking into account the unique design characteristics involved in aero-capable ground vehicle
Standard

DOLLY ROLLOVER RECOMMENDED TEST PROCEDURE

1993-04-01
HISTORICAL
J2114_199304
This SAE Recommended Practice describes the test procedure for conducting a rollover test using a dolly fixture designed to laterally trip a vehicle into a roll. Its purpose is to establish a recommended test procedure which will standardize the procedure between different test facilities. A description of the test procedure, test instrumentation, photographic/video coverage, and the rollover fixture is included.
Standard

Dolly Rollover Recommended Test Procedure

1999-10-01
HISTORICAL
J2114_199910
This SAE Recommended Practice describes the test procedure for conducting a rollover test using a dolly fixture designed to laterally trip a vehicle into a roll. Its purpose is to establish a recommended test procedure which will standardize the procedure between different test facilities. A description of the test procedure, test instrumentation, photographic/video coverage, and the rollover fixture is included.
Standard

Dolly Rollover Recommended Test Procedure

2011-02-21
CURRENT
J2114_201102
This SAE Recommended Practice describes the test procedure for conducting a rollover test using a dolly fixture designed to laterally trip a vehicle into a roll. Its purpose is to establish a recommended test procedure which will standardize the procedure between different test facilities. A description of the test procedure, test instrumentation, photographic/video coverage, and the rollover fixture is included.
Standard

Dynamic Simulation Sled Testing

1999-03-01
HISTORICAL
J2481_199903
Dynamic simulation sled testing can represent various automotive collision conditions. Deceleration conditions during sled testing are readily reproducible and can be tuned to simulate collision events that occur during vehicle impacts with a fixed barrier or vehicle. Sled tests are conducted on automotive vehicle bodies or other structures to obtain valuable information. This information can be used to evaluate the dynamic performance of, but not limited to, vehicle restraint systems, vehicle seating systems, and body closure systems.
Standard

Dynamic Simulation Sled Testing

2009-11-09
HISTORICAL
J2481_200911
Dynamic simulation sled testing can represent various automotive collision conditions. Deceleration conditions during sled testing are readily reproducible and can be tuned to simulate collision events that occur during vehicle impacts with a fixed barrier or vehicle. Sled tests are conducted on automotive vehicle bodies or other structures to obtain valuable information. This information can be used to evaluate the dynamic performance of, but not limited to, vehicle restraint systems, vehicle seating systems, and body closure systems.
Standard

Dynamic Simulation Sled Testing

2013-10-29
HISTORICAL
J2481_201310
Dynamic simulation sled testing can represent various automotive collision conditions. Acceleration conditions during sled testing are readily reproducible and can be tuned to simulate collision events that occur during vehicle impacts with a fixed barrier or vehicle. Sled tests are conducted on automotive vehicle bodies or other structures to obtain valuable information. This information can be used to evaluate the dynamic performance of, but not limited to, vehicle restraint systems, vehicle seating systems, and body closure systems.
Standard

Dynamic Simulation Sled Testing

2022-04-25
CURRENT
J2481_202204
Dynamic simulation sled testing can represent various automotive collision conditions. Acceleration conditions during sled testing are readily reproducible and can be tuned to simulate collision events that occur during vehicle impacts with a fixed barrier or vehicle. Sled tests are conducted on automotive vehicle bodies or other structures to obtain valuable information. This information can be used to evaluate the dynamic performance of, but not limited to, vehicle restraint systems, vehicle seating systems, and body closure systems.
Standard

Electric Vehicle (E-Vehicle) Crash Test Lab Safety Guidelines

2022-01-20
CURRENT
J3040_202201
The special risks associated with conducting crash tests on E-vehicles can be divided into two main categories: (1) thermal activity inside the battery (resulting from electrical or mechanical abuse) may lead to energetic emission of harmful and/or flammable gases, thermal runaway, and potentially fire; and (2) the risk of electrocution. Procedures to ensure protection from all types of risk must be integrated into the entire crash test process. This SAE Information Report is intended to provide guidance in this endeavor using current best practices at the time of this publication. As both battery technology and battery management system technology are in a phase of expansion, the contents of this report must then be gaged against current technology of the time and updated periodically to retain its applicability and usefulness.
Standard

Electric Vehicle (E-Vehicle) Crash Test Lab Safety Guidelines

2015-12-17
HISTORICAL
J3040_201512
The special risks associated with conducting crash tests on E-Vehicles can be divided into two main categories; 1) thermal activity inside the battery (resulting from electrical or mechanical abuse) may lead to energetic emission of harmful and/or flammable gases, thermal runaway, and potentially fire, and 2) the risk of electrocution. Procedures to ensure protection from all types of risk must be integrated into the entire crash test process. This informational report is intended to provide guidance in this endeavor using current best practices at the time of this publication. As both battery technology and battery management system technology is in a phase of expansion, the contents of this report must then be gaged against current technology of the time, and updated periodically to retain its applicability and usefulness.
Standard

FIXED RIGID BARRIER COLLISION TESTS

1988-11-01
HISTORICAL
J850_198811
Barrier collisions represent the most severe type of automotive impacts. Deceleration conditions during barrier collisions are more readily reproducible than those occurring during other types of impacts. Barrier collision tests are conducted on automotive vehicles to obtain information of value in reducing occupant injuries and in evaluating structural integrity. The purpose of this SAE Recommended Practice is to establish sufficient standardization of barrier collision methods that results of tests conducted at different facilities may be compared.
Standard

Fixed Rigid Barrier Collision Tests

2009-11-09
HISTORICAL
J850_200911
Fixed rigid barrier collisions can represent severe automotive impacts. Barrier collision tests are conducted on automotive vehicles to obtain information of value in reducing occupant injuries and in evaluating structural integrity. The purpose of this SAE Recommended Practice is to establish sufficient standardization of barrier collision methods so that results of similar tests conducted at different facilities can be compared. The barrier device may be of almost any configuration, such as flat, round, offset, etc.
Standard

Fixed Rigid Barrier Collision Tests

2015-04-09
CURRENT
J850_201504
Fixed rigid barrier collisions can represent severe automotive impacts. Barrier collision tests are conducted on automotive vehicles to obtain information of value in reducing occupant injuries and in evaluating structural integrity. The purpose of this SAE Recommended Practice is to establish sufficient standardization of barrier collision methods so that results of similar tests conducted at different facilities can be compared. The barrier device may be of almost any configuration, such as flat, round, offset, etc.
Standard

Fixed Rigid Barrier Collision Tests

2000-09-07
HISTORICAL
J850_200009
Fixed rigid barrier collisions can represent severe automotive impacts. Deceleration conditions during fixed rigid barrier collisions are more readily reproducible than those occurring during impacts with yielding barriers. Barrier collision tests are conducted on automotive vehicles to obtain information of value in reducing occupant injuries and in evaluating structural integrity. The purpose of this SAE Recommended Practice is to establish sufficient standardization of barrier collision methods so that results of similar tests conducted at different facilities can be compared. The barrier device may be of almost any configuration, such as flat, round, offset, etc.
Standard

Hydrogen Vehicle Crash Test Lab Safety Guidelines

2022-02-23
CURRENT
J3121_202202
The scope of this document is to provide an overview of the risks and protective precautions to ensure safe and effective testing procedures for the test personnel and the vehicle during the testing of a hydrogen fuel cell vehicle. The main risks associated with a hydrogen fuel cell vehicle are the fuel cell stack, hydrogen storage vessel, fuel cell system components and the high voltage battery. Risks could be summarized from the battery into thermal runaway possibly leading to fire or explosion, electrolyte spillage and electrical shock or electrocution. The hydrogen fuel cell system risks include electrical shock or electrocution and possible release of hydrogen gas (if tested with). Vehicle crash testing protection should be coordinated with the system or component manufacturer(s) suggestions. Precautions should be taken with the handling, transportation, and storage of the vehicle pre-crash and post-crash.
Standard

Impact Testing of Automated Vehicles

2021-05-11
WIP
J3255
Dynamic impact test represent various automotive collision conditions. The impact testing recommended practice is intended to recognize the capabilities of autonomous vehicles while at the same time recognizing the vehicle fleet into which they are introduced will consist of non-autonomous vehicles for a considerable period of time. The scope of the document is to cover the range of impact conditions expected taking into account the capabilities of the vehicle and the impact testing technology now available for performance evaluation including virtual and physical testing.
Standard

Linear Impact Procedure for Occupant Ejection Protection

2016-04-28
HISTORICAL
J2937_201604
The objective of this document is to enhance the test procedure that is used for ejection mitigation testing per the NHTSA guidelines as mentioned in the FMVSS226 Final Rule document (NHTSA Docket No. NHTSA-2011-0004). The countermeasure for occupant ejection testing is to be tested with an 18kg mass on a guided linear impactor using the featureless headform specifically designed for ejection mitigation testing. SAE does not endorse any particular countermeasure for ejection mitigation testing. However, the document reflects guidelines that should be followed to maintain consistency in the test results. Examples of currently used countermeasures include the Inflatable Curtain airbags and Laminated Glass.
Standard

Linear Impact Procedure for Occupant Ejection Protection

2021-10-08
CURRENT
J2937_202110
The objective of this document is to enhance the test procedure that is used for ejection mitigation testing per the NHTSA guidelines as mentioned in the FMVSS226 Final Rule document (NHTSA Docket No. NHTSA-2011-0004). The countermeasure for occupant ejection testing is to be tested with an 18kg mass on a guided linear impactor using the featureless headform specifically designed for ejection mitigation testing. SAE does not endorse any particular countermeasure for ejection mitigation testing. However, the document reflects guidelines that should be followed to maintain consistency in the test results. Examples of currently used countermeasures include the Inflatable Curtain airbags and Laminated Glass.
X