Refine Your Search

Topic

Affiliation

Search Results

Event

2024-04-24
Technical Paper

10 Year-Old Hybrid III ATD Positions in Panic Brake Conditions

2004-03-08
2004-01-0848
Panic braking can cause an “in-position” unbelted occupant to become “out-of-position.” Although the braking event dynamics and initial positioning of the occupant affect the final position at time of impact (if any), general trends are assumed. FMVSS208 now includes “out-of-position” (OOP) performance for Anthropomorphic Test Devices (ATDs) sizes twelve month to six year-old. Airbag suppression technologies currently address that range of OOP occupants. The objective of this study is to develop an approach to defining OOP test positions for the recently released 10 year old ATD and to assist restraint engineers in developing strategies to help reduce the risk of inflation induced injury to the larger out-of-position child. A series of panic brake tests was conducted with the 10 year-old Hybrid III to study panic braking kinematics. Antilock braking (ABS) generated the desired constant deceleration from high initial speeds (40 to 60mph) in three types of vehicles.
Standard

2-D CAD Template for SAE J826 H-point Machine

2016-10-13
J826/2_201610
This document describes the 2-D computer-aided design (CAD) template for the HPM-1 H-point machine or HPD available from SAE. The elements of the HPD include the curve shapes, datum points and lines, and calibration references. The intended purpose for this information is to provide a master CAD reference for design and benchmarking. The content and format of the data files that are available are also described.
Standard

2-D CAD Template for SAE J826 H-point Machine

2022-02-18
J826/2_202202
This document describes the 2-D computer-aided design (CAD) template for the HPM-1 H-point machine or HPD available from SAE. The elements of the HPD include the curve shapes, datum points and lines, and calibration references. The intended purpose for this information is to provide a master CAD reference for design and benchmarking. The content and format of the data files that are available are also described.
Technical Paper

2-Ply Windshields: Laboratory Impactor Tests of the Polyurethane Construction

1995-02-01
950048
A test program was conducted to characterize the impact response of an experimental 2-ply windshield construction with a polyurethane (PUR) plastic inner layer. Windshield impact tests were conducted using a linear impactor test facility. Principle among the findings was that the impact response of prototype PUR 2-ply windshields does not differ that significantly from that of baseline 3-ply HPR (High Penetration Resistance) windshields for the subcompact vehicle geometry tested. However, the impact responses of both PUR 2-ply and 3-ply HPR subcompact vehicle windshields were found to be highly variable. Average performance of either construction could thus be enhanced if ways could be found (and then implemented) to reduce this variability.
Technical Paper

2-Ply Windshields: Laboratory Impactor Tests of the Polyvinyl Butyral/Polyester Construction

1995-02-01
950047
A test program was conducted to characterize the impact response of an experimental 2-ply windshield construction with a polyvinyl butyral / polyester (PVB/PET) inner plastic laminate. Windshield impact tests were conducted using a linear impactor test facility. Principal among the findings was that the measured impact response of prototype PVB/PET 2-ply windshields was highly variable. Average performance of this construction could thus be improved if ways could be found (and then implemented) to reduce this variability.
Technical Paper

2D Ice Shape Scaling for Helicopter Blade Profiles in Icing Wind Tunnel

2015-06-15
2015-01-2129
Different Airbus Helicopters main rotor blade profiles were tested in different icing wind tunnels and for different icing conditions. One of the objectives of the accretion tests was to validate the use of 2D icing scaling laws established for fixed wing aircraft on helicopter blade profiles. Therefore, ice shapes resulting from tests with the same icing similarity parameters are compared to each other allowing the assessment of icing scaling laws for helicopter applications. This paper presents the icing scaling laws used at Airbus Helicopters on blade profiles, the different test set ups and test models and it presents the comparison of the ice shapes collected during the icing wind tunnel test campaigns.
Technical Paper

2D Polar Assessment in Icing Wind Tunnel for iced Helicopter Blade Profiles

2015-06-15
2015-01-2127
A helicopter blade profile was tested in the DGA Aero-engine Testing's icing altitude test facility S1 in Saclay, France during the winter of 2013/2014. The airfoil was a helicopter main rotor OA312 blade profile made out of composite material and with a metallic erosion shield. Dry air and ice accretion tests have been performed in order to assess the iced airfoil's aerodynamic behaviour. Several icing conditions were tested up through Mach numbers around 0.6. This paper presents the test setup, the test model and some of the test results. The test results presented in this paper include the ice shapes generated as well as dry air and iced airfoil lift and drag curves (polars) which were obtained with the real ice shapes on the airfoil.
Technical Paper

3 Inch Ice Shapes, AB Initio

2023-06-15
2023-01-1434
The term “3 inch ice shapes” has assumed numerous definitions throughout the years. At times it has been used to generally characterize large glaze ice accretions on the major aerodynamic surfaces (wing, horizontal stabilizer, vertical stabilizer) for evaluating aerodynamic performance and handling qualities after a prolonged icing encounter. It has also been used as a more direct criterion while determining or enforcing sectional ice shape characteristics such as the maximum pinnacle height. It is the authors’ observation that over the years, the interpretation and application of this term has evolved and is now broadly misunderstood. Compounding the situation is, at present, a seemingly contradictory set of guidance among (and even within) the various international regulatory agencies resulting in an ambiguous set of expectations for design and certification specialists.
Technical Paper

3 and 6 Years Old Child Anthropometry and Comparison with Crash Dummies

2006-07-04
2006-01-2354
The objective of this paper is to compare the external anthropometry of 3 and 6 year old French children with the corresponding existing crash test dummies. An anthropometry study has been performed on about 70 (respectively 80) French children aged 3 years (respectively 6). More than 40 external measurements have been acquired on each subject. They include dimensions in standing and sitting positions: heights, lengths, circumferences, weight, etc. Mean, standard deviation, minimum and maximal values are given and compared with other existing international databases. From a global point of view, dimensions observed in this study appear 12% higher than in others. Dimensions are more specifically compared with corresponding crash test dummies in order to evaluate the validity of these anthropomorphic test devices.
Technical Paper

3D Computational Methodology for Bleed Air Ice Protection System Parametric Analysis

2015-06-15
2015-01-2109
A 3D computer model named AIPAC (Aircraft Ice Protection Analysis Code) suitable for thermal ice protection system parametric studies has been developed. It was derived from HASPAC, which is a 2D anti-icing model developed at Wichita State University in 2010. AIPAC is based on the finite volumes method and, similarly to HASPAC, combines a commercial Navier-Stokes flow solver with a Messinger model based thermodynamic analysis that applies internal and external flow heat transfer coefficients, pressure distribution, wall shear stress and water catch to compute wing leading edge skin temperatures, thin water flow distribution, and the location, extent and rate of icing. In addition, AIPAC was built using a transient formulation for the airfoil wall and with the capability of extruding a 3D surface grid into a volumetric grid so that a layer of ice can be added to the computational domain.
Technical Paper

3D Immersed Boundary Methods for the Calculations of Droplet Trajectories towards Icing Application

2023-06-15
2023-01-1458
The in-flight ice accretion simulations are typically performed using a quasi-steady formulation through a multi-step approach. As the ice grows, the geometry changes, and an adaptation of the fluid volume mesh used by the airflow and droplet-trajectory solver is required. Re-meshing or mesh deformation are generally employed to do that. The geometries formed are often complex ice shapes increasing the difficulty of the re-meshing process, especially in three-dimensional simulations. Consequently, difficulties are encountered when trying to automate the process. Contrary to the usual body-fitted mesh approach, the use of immersed boundary methods (IBMs) allows solving, or greatly reducing, this problem by removing the mesh update, facilitating the global automation of the simulation. In the following paper, an approach to perform the airflow and droplet trajectory calculations for three-dimensional simulations is presented. This framework utilizes only immersed boundary methods.
Technical Paper

3D Superficial Anthropometry to Evaluate the Biomechanics and the Aesthetics of the Spinal Deformities

2004-06-15
2004-01-2136
This work describes the definition and implementation of a dedicated system (hardware and software) for the quantitative evaluation of the anthropometrics and morphological parameters of the back shape. This was applied to the digital 3D analysis of subjects affected by spinal pathologies. In fact in clinical practice it is needed to have a repeatable and easy method to frequent non invasive screening of the rib system records a 3D model of the back shape standard and automated procedure. Its clinical validation is presented.
Technical Paper

42 V Electric Air Conditioning Systems (E-A/CS) for Low Emissions, Architecture, Comfort and Safety of Next Generation Vehicles

2001-08-20
2001-01-2500
Electrical Air Conditioning Systems for 42 V vehicles will provide many benefits in terms of Environment protection, car Architecture, cabin Comfort and overall Safety. E-A/C Systems essentially differ from conventional ones by the use of electrical compressors. First of all, they will be particularly well adapted to new powertrains, helping to make them more environmentally friendly. Accurate control and high efficiency under the most common thermal conditions will reduce the A/C impact on fuel consumption. Besides, higher sealing integrity will cut emissions of refrigerant during normal operation and maintenance. Secondly, the use of an electrically driven compressor (EDC) will suppress a belt, and will reduce the packaging constraints. This will help to design new vehicle architectures. Thirdly, the electrification of air conditioning will allow better thermal comfort. In particular, E-A/C Systems provide a good opportunity for cabin pre-conditioning.
Technical Paper

42V Integrated Starter/Alternator Systems

2003-06-23
2003-01-2258
The increasing power demand in vehicles has resulted in a need for a higher onboard generation capacity. With the increasing generation requirement, the torque levels of the generator are found to closely converge with that of the starter motor. Hence, integrating the two machines and using a single machine for the two purposes would be technically viable and economically advantageous. This results in a more compact design solution as well. The Integrated Starter/Alternator (ISA) will be integrated directly to the crankshaft of the Internal Combustion Engine (ICE) and deliver 5 kW average and 12-15 kW peak power at 42V.
Technical Paper

4D Radar-Inertial SLAM based on Factor Graph Optimization

2024-04-09
2024-01-2844
SLAM (Simultaneous Localization and Mapping) plays a key role in autonomous driving. Recently, 4D Radar has attracted widespread attention because it breaks through the limitations of 3D millimeter wave radar and can simultaneously detect the distance, velocity, horizontal azimuth and elevation azimuth of the target with high resolution. However, there are few studies on 4D Radar in SLAM. In this paper, RI-FGO, a 4D Radar-Inertial SLAM method based on Factor Graph Optimization, is proposed. The RANSAC (Random Sample Consensus) method is used to eliminate the dynamic obstacle points from a single scan, and the ego-motion velocity is estimated from the static point cloud. A 4D Radar velocity factor is constructed in GTSAM to receive the estimated velocity in a single scan as a measurement and directly integrated into the factor graph. The 4D Radar point clouds of consecutive frames are matched as the odometry factor.
Technical Paper

777 Wing and Engine Ice Protection System

1997-07-14
972260
This paper describes the wing and engine ice protection system, used on all 777 aircraft. The 777 ice protection system is unique in two ways: it has an advanced control system which minimizes aircraft power consumption. In addition, the system was procured by the prime contractor, Boeing, as a fully integrated subsystem from a single supplier.
Technical Paper

A 0-D Calculation Template to Define Crush Space Requirement and Body Front End Force Level Requirement in Concept Stage

2017-01-10
2017-26-0009
Today’s automotive world has moved towards an age where safety of a vehicle is given the topmost priority. Many stringent crash norms and testing methodology has been defined in order to evaluate the safety of a vehicle prior to its launch in a particular market. If the vehicle fails to meet any of these criteria then it is debarred from that particular market. With such stringent norms and regulations in place it becomes quite important on the engineer’s part to define the structural requirements and protect the space to meet the same. If the concept level platform definition is done properly it becomes very easy to achieve the crash targets with less cost and weight impact.
Technical Paper

A 100 G Frontal Crash Sled Test System

2004-03-08
2004-01-0473
This paper describes the development of a new sled system that can address many safety-related issues pertaining to the racing industry. The system was designed to re-create acceleration and velocity levels similar to levels evident in race car crashes. The sled utilizes equipment typically used in passenger car crash research with the primary change to a specially designed lightweight carriage. This paper will overview the system and the types of crash events that can be simulated. Readers of this paper will gain a much broader understanding of accelerator sled testing and the issues related to the simulation of high speed crashes using physical testing.
Technical Paper

A 30 mph Front/Rear Crash with Human Test Persons

1979-02-01
791030
A great deal of data is available concerning accident simulation tests with test dummies or cadavers but in comparison there is very little material on tests involving living volunteers. This paper describes crash tests and sled tests with human test persons and Hybrid II dummies. To obtain a realistic accident simulation the tests were run with standard Audi 80 vehicles fitted with the standard seat belt systems. The results clearly demonstrate that none of the test persons sustain any kind of physical injury at a precisely defined level of accident severity (vehicle-to-vehicle crash at a collision speed of approx. 30 mph). In some cases considerable differences are revealed between the loadings imposed on the dummies and the human test persons.
X