Refine Your Search




Search Results

Technical Paper

2-Color Thermometry Experiments and High-Speed Imaging of Multi-Mode Diesel Engine Combustion

Although in-cylinder optical diagnostics have provided significant understanding of conventional diesel combustion, most alternative combustion strategies have not yet been explored to the same extent. In an effort to build the knowledge base for alternative low-temperature combustion strategies, this paper presents a comparison of three alternative low-temperature combustion strategies to two high-temperature conventional diesel combustion conditions. The baseline conditions, representative of conventional high-temperature diesel combustion, have either a short or a long ignition delay. The other three conditions are representative of some alternative combustion strategies, employing significant charge-gas dilution along with either early or late fuel injection, or a combination of both (double-injection).
Technical Paper

2-D Measurements of the Liquid Phase Temperature in Fuel Sprays

Cross-sectional distributions of the liquid phase temperatures in fuel sprays were measured using a laser-induced fluorescence technique. The liquid fuel (n-hexadecane or squalane) was doped with pyrene(C16H10). The fluorescence intensity ratios of the pyrene monomer and excimer emissions has temperature dependence, and were used to determine the liquid phase temperatures in the fuel sprays. The measurements were performed on two kinds of sprays. One was performed on pre-heated fuel sprays injected into surrounding gas at atmospheric conditions. The other was performed on fuel sprays exposed to hot gas flow. The spray was excited by laser radiation at 266nm, and the resulting fluorescence was imaged by an intensified CCD camera. The cross-sectional distribution of the liquid phase temperature was estimated from the fluorescence image by the temperature dependence of the intensity ratio.
Technical Paper

2-Door Vehicle Body Local Force Evaluation with the IIHS, EuroNCAP, and LINCAP Side Impact Barriers

Structure enhancement based on data monitored in a traditional side impact evaluation is primarily a trial and error exercise resulting in a large number of computer runs. This is because how the structure gets loaded and the degree of contribution of local structural components to resist the impact while absorbing energy during a side collision is not completely known. Developing real time complete load profiles on a body side during the time span of an impact is not an easy task and these loads cannot be calculated from that calculated at the barrier mounting plate. This paper highlights the load distribution, calculated by a procedure using computer aided engineering (CAE) tools, on a typical 2-door vehicle body side when struck by moving deformable barriers used in the insurance institute for highway safety (IIHS), EuroNCAP and LINCAP side impact evaluations.
Technical Paper

2-Ply Windshields: Laboratory Impactor Tests of the Polyurethane Construction

A test program was conducted to characterize the impact response of an experimental 2-ply windshield construction with a polyurethane (PUR) plastic inner layer. Windshield impact tests were conducted using a linear impactor test facility. Principle among the findings was that the impact response of prototype PUR 2-ply windshields does not differ that significantly from that of baseline 3-ply HPR (High Penetration Resistance) windshields for the subcompact vehicle geometry tested. However, the impact responses of both PUR 2-ply and 3-ply HPR subcompact vehicle windshields were found to be highly variable. Average performance of either construction could thus be enhanced if ways could be found (and then implemented) to reduce this variability.
Technical Paper

2-Ply Windshields: Laboratory Impactor Tests of the Polyvinyl Butyral/Polyester Construction

A test program was conducted to characterize the impact response of an experimental 2-ply windshield construction with a polyvinyl butyral / polyester (PVB/PET) inner plastic laminate. Windshield impact tests were conducted using a linear impactor test facility. Principal among the findings was that the measured impact response of prototype PVB/PET 2-ply windshields was highly variable. Average performance of this construction could thus be improved if ways could be found (and then implemented) to reduce this variability.

2009 Ultimate GD&T Pocket Guide 2nd Ed

The Ultimate GD&T Pocket Guide explains the most common rules, symbols, and concepts used in geometric dimensioning and tolerancing. ...This one-of-a-kind reference guide includes over 100 detailed drawings to illustrate concepts, more than 40 charts for quick reference, explanations of each GD&T symbol and modifier and much more...Written by standards expert Alex Krulikowski, this valuable on-the-job reference clarifies how to interpret standard-compliant technical drawings that use ASME Y14.5-2009.
Technical Paper

21st Century Lunar Exploration: Advanced Radiation Exposure Assessment

On January 14, 2004 President George W Bush outlined a new vision for NASA that has humans venturing back to the moon by 2020. With this ambitious goal, new tools and models have been developed to help define and predict the amount of space radiation astronauts will be exposed to during transit and habitation on the moon. A representative scenario is used that includes a trajectory from LEO to a Lunar Base, and simplified CAD models for the transit and habitat structures. For this study galactic cosmic rays, solar proton events, and trapped electron and proton environments are simulated using new dynamic environment models to generate energetic electron, and light and heavy ion fluences. Detailed calculations are presented to assess the human exposure for transit segments and surface stays.
Technical Paper

3-D Crash Analysis Using ADAMS

The dynamics of vehicle front end crash are studied using the ADAMS dynamic simulation code. The analysis is carried out in three dimensions and can capture the behavior associated with an asymmetrical structure or impact mode. Subroutines which allow the modeling of structural crush and plastic hinge formation, contact forces and friction forces are discussed. The method is relatively inexpensive, but does require a good understanding of the problem on the part of the analyst. A discussion of the techniques that are used to model the structural system is given. The results of the analysis are compared with experimental data and the correlation is very encouraging.
Technical Paper

3-Dimensional Lightning Observations Using a Time-of-Arrival Lightning Mapping System

A lightning mapping system has been developed that locates the sources of VHF radiation from lightning discharges in three spatial dimensions and time. The system consists of several VHF receivers distributed over an area of about 100 km diameter. The system locates VHF radiation sources over the array with an accuracy of about 100 m. The system locates sources out to 250 km from the center of the array with reduced accuracy. The observations are found to reflect the basic charge structure of electrified storms.
Technical Paper

3-Dimensional Simulation of Vehicle Response to Tire Blow-outs

Sudden tire deflation, or blow-out, is sometimes cited as the cause of a crash. Safety researchers have previously attempted to study the loss of vehicle control resulting from a blow-out with some success using computer simulation. However, the simplified models used in these studies did little to expose the true transient nature of the handling problem created by a blown tire. New developments in vehicle simulation technology have made possible the detailed analysis of transient vehicle behavior during and after a blow-out. This paper presents the results of an experimental blow-out study with a comparison to computer simulations. In the experiments, a vehicle was driven under steady state conditions and a blow-out was induced at the right rear tire. Various driver steering and braking inputs were attempted, and the vehicle response was recorded. These events were then simulated using EDVSM. A comparison between experimental and simulated results is presented.
Technical Paper

3D Deformation and Dynamics of the Human Cadaver Abdomen under Seatbelt Loading

According to accident analysis, submarining is responsible for most of the frontal car crash AIS 3+ abdominal injuries sustained by restrained occupants. Submarining is characterized by an initial position of the lap belt on the iliac spine. During the crash, the pelvis slips under the lap belt which loads the abdomen. The order of magnitude of the abdominal deflection rate was reported by Uriot to be approximately 4 m/s. In addition, the use of active restraint devices such as pretensioners in recent cars lead to the need for the investigation of Out-Of-Position injuries. OOP is defined by an initial position of the lap belt on the abdomen instead of the pelvis resulting in a direct loading of the abdomen during pretensioning and the crash. In that case, the penetration speed of the belt into the abdomen was reported by Trosseille to be approximately 8 to 12 m/s. The aim of this study was to characterize the response of the human abdomen in submarining and OOP.


This SAE Aerospace Information Report (AIR) describes field-level procedures to determine if 400 Hz electrical connections for external power may have been subjected to excessive wear, which may result in inadequate disengagement forces.
Technical Paper

4300 F Thermocouples for Re-Entry Vehicle Applications Part II

This paper presents a discussion of the component evaluation and design development work performed in developing a 4300 F reentry vehicle nose cap temperature sensor. Material compatabilities, insulation resistance, and atmospheric pressure effects on bare wire calibration data are discussed in some detail. The final design is outlined and the application problems discussed. The probe utilizes: a sintered iridium high temperature sheath (4300 F) and platinum 20% rhodium as the low temperature sheath (3000 F); beryllia as insulation -- hard fired at 4300 F and compacted powder at 3000 F; tungsten versus tungsten 26% rhenium as the thermocouple pair.
Technical Paper

5-years status report of the advanced offset frontal crash protection

This paper will provide an overview of the work progress of the advanced offset frontal crash protection group of IHRA. It resumes, including tables, the strategy of the group to cope with the assigned task. This is the commitment to achieve an harmonized frontal crash protection procedure taking into account the different world wide views in this field.
Technical Paper

56 Development of two-cylinder liquid-cooled utility gasoline engine models with twin balancer shafts

The new small and lightweight 2-cylinder liquid-cooled OHC gasoline engines were developed. These new engines are featuring high output, low vibration and noise radiation and so able to improve the comfortableness and amenity of applied utility machines. In this paper, the features of the new engines and the process to realize development targets are introduced. The basic structure adopted on the new engines is a liquid-cooled, inline 2-cyilinder layout with 360-degree firing intervals, twin balancer shafts, and an overhead camshaft that is driven by a cogged belt. Also various parts made of aluminum alloy and plastics could make the engine lighter. By these measures, the new engines could satisfy their hardest development targets, and realize their easy installation, higher versatility, and have the excellent features such as compact size, lightweight, high output, low exhaust gas emission and low vibration and noise radiation.
Technical Paper

61 Fundamental Analysis of Motorcyclist Injury Risk Using A Statistical Model Based on Real-world Crashes

This paper describes the risk of injury to the rider in a crash using a statistical model based on real-world accident data. We analyzed the road traffic accidents data in Los Angeles and Hanover. Logistic regression modeling technique was used to clarify the relationship among probabilities of minor, serious, fatal injury risk to the rider, and the influence of risk factors in accidents involving opposing vehicle contact point, motorcycle contact point, opposing vehicle speed, motorcycle speed, relative heading angle of impact, and helmet use. The odds ratio, which was adjusted for risk factors simultaneously, was estimated by using the developed technique, and was compared with the effects of risk factors individually. The results showed that there was a statistically significant relationship between minor and serious injuries and opposing vehicle speed, motorcycle speed and opposing vehicle contact point.
Technical Paper

A 0-D Calculation Template to Define Crush Space Requirement and Body Front End Force Level Requirement in Concept Stage

Today’s automotive world has moved towards an age where safety of a vehicle is given the topmost priority. Many stringent crash norms and testing methodology has been defined in order to evaluate the safety of a vehicle prior to its launch in a particular market. If the vehicle fails to meet any of these criteria then it is debarred from that particular market. With such stringent norms and regulations in place it becomes quite important on the engineer’s part to define the structural requirements and protect the space to meet the same. If the concept level platform definition is done properly it becomes very easy to achieve the crash targets with less cost and weight impact.
Technical Paper

A 100 G Frontal Crash Sled Test System

This paper describes the development of a new sled system that can address many safety-related issues pertaining to the racing industry. The system was designed to re-create acceleration and velocity levels similar to levels evident in race car crashes. The sled utilizes equipment typically used in passenger car crash research with the primary change to a specially designed lightweight carriage. This paper will overview the system and the types of crash events that can be simulated. Readers of this paper will gain a much broader understanding of accelerator sled testing and the issues related to the simulation of high speed crashes using physical testing.
Technical Paper

A 2D Vehicle-to-Vehicle Crash Model for Fleet Analysis (Part-I)

This paper presents a 2D model for frontal vehicle-to-vehicle crashes that can be used for fleet modeling. It presents the derivational details and a preliminary assessment of the model. The model is based on rigid-body collision principles, enhanced adequately to represent energy dissipation and lateral engagement that plays a significant role in oblique frontal vehicle-to-vehicle crashes. The model employs the restitution and the apparent friction in order to represent dissipation and engagement respectively. It employs the impulse ellipse to identify the physical character of the crash, based on the principal directions of impulse. The enhancement of the rigid body collision model with restitution and apparent friction is based on collision simulations that use very simple finite element vehicle representations. The dependence of the restitution and the apparent friction on the incidence angle, the frontal offset, and the mass ratio, as predicted by the 2D model, has been presented.
Technical Paper

A 30 mph Front/Rear Crash with Human Test Persons

A great deal of data is available concerning accident simulation tests with test dummies or cadavers but in comparison there is very little material on tests involving living volunteers. This paper describes crash tests and sled tests with human test persons and Hybrid II dummies. To obtain a realistic accident simulation the tests were run with standard Audi 80 vehicles fitted with the standard seat belt systems. The results clearly demonstrate that none of the test persons sustain any kind of physical injury at a precisely defined level of accident severity (vehicle-to-vehicle crash at a collision speed of approx. 30 mph). In some cases considerable differences are revealed between the loadings imposed on the dummies and the human test persons.