Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Performance Scaling of Spark-Ignition Engines: Correlation and Historical Analysis of Production Engine Data

This study examines the scaling between engine performance, engine configuration, and engine size and geometry, for modern spark-ignition engines. It focuses especially on design features that impact engine breathing. We also analyze historical trends to illustrate how changes in technology have improved engine performance. Different geometric parameters such as cylinder displacement, piston area, number of cylinders, number of valves per cylinder, bore to stroke ratio, and compression ratio, in appropriate combinations, are correlated to engine performance parameters, namely maximum torque, power and brake mean effective pressure, to determine the relationships or scaling laws that best fit the data. Engine specifications from 1999 model year vehicles sold in the United States were compiled into a database and separated into two-, three-, and four-valves-per-cylinder engine categories.
Journal Article

The Trade-off between Automobile Acceleration Performance, Weight, and Fuel Consumption

This paper evaluates how the fuel consumption of the average new U.S. passenger car will be penalized if engine and vehicle improvements continue to be focused on developing bigger, heavier and more powerful automobiles. We quantify a parameter called the Emphasis on Reducing Fuel Consumption (ERFC) and find that there has been little focus on improving fuel consumption in the U.S. over the past twenty years. In contrast, Europe has seen significantly higher ERFC. By raising the ERFC over the next few decades, we can reduce the average U.S. new car's fuel consumption by up to some 40 percent and cut the light-duty vehicle fleet's fuel use by about a quarter. Achieving substantial fuel use reduction will remain a major challenge if automobile size, weight and power continue to dominate.
Technical Paper

Time Resolved Measurements of Exhaust Composition and Flow Rate in a Wankel Engine

Measurements were made of exhaust histories of the following species: unburned hydrocarbons (HC), carbon monoxide, carbon dioxide, oxygen, and nitric oxide (NO). The measurements show that the exhaust flow can be divided into two distinct phases: a leading gas low in HC and high in NO followed by a trailing gas high in HC and low in NO. Calculations of time resolved equivalence ratio throughout the exhaust process show no evidence of a stratified combustion. The exhaust mass flow rate is time resolved by forcing the flow to be locally quasi-steady at an orifice placed in the exhaust pipe. The results with the quasi-steady assumption are shown to be consistent with the measurements. Predictions are made of time resolved mass flow rate which compare favorably to the experimental data base. The composition and flow histories provide sufficient information to calculate the time resolved flow rates of the individual species measured.
Journal Article

Trends in Performance Characteristics of Modern Automobile SI and Diesel Engines

A prior study (Chon and Heywood, [1]) examined how the design and performance of spark-ignition engines evolved in the United States during the 1980s and 1990s. This paper carries out a similar analysis of trends in basic engine design and performance characteristics over the past decade. Available databases on engine specifications in the U.S., Europe, and Japan were used as the sources of information. Parameters analyzed were maximum torque, power, and speed; number of cylinders and engine configuration, cylinder displacement, bore, stroke, compression ratio; valvetrain configuration, number of valves and their control; port or direct fuel injection; naturally-aspirated or turbocharged engine concepts; spark-ignition and diesel engines. Design features are correlated with these engine’s performance parameters, normalized by engine and cylinder displacement.