Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Cooperative Evaluation of Techniques for Measuring Diesel Exhaust Odor Using the Diesel Odor Analysis System (DOAS)

1980-02-01
800422
The CRC-APRAC CAPI-1-64 Odor Panel was formed in 1973 to assess an instrumental measurement system for diesel exhaust odor (DOAS) developed under CRC-APRAC CAPE-7-68 by Arthur D. Little, Inc. Four cooperative studies were conducted by nine participating laboratories using common samples. The objectives of these studies were to define the DOAS system variables and to validate and improve the sampling and collection procedures. A fifth study, serving as a review of each analysis step, showed that analysis of common derived odorant samples could be conducted within acceptable limits by the participating laboratories. Three in-house sampling system design and operating parameter studies were conducted simultaneously with the cooperative work. The combined findings from the in-house and cooperative studies led to a tentative recommended procedure for measuring diesel exhaust odor.
Technical Paper

Design and Computer Simulation of Microprocessor Controlled Lubricating Oil Cooling System for Truck Diesel Engine

1988-02-01
880488
A microprocessor controlled lubricating oil cooling system of truck diesel engine was designed to minimize the sump oil temperature fluctuation during start-up and nonsteady engine operations. Model reference adaptive control method is utilized in the control system design. The analysis involved in the design of the microprocessor controlled oil cooling system, and the applications of a special vehicle-engine-cooling system (VEC) computer simulation code in the implementation and testing of the model reference adaptive control strategy are described. Using the VEC simulation code, the performance of the microprocessor controlled oil cooling system and the conventionally controlled oil cooling systems were compared for the ATB, temperature disturbances, and cold weather transient tests. An explanation of each test, as well as a review of the results of comparison tests are presented.
Technical Paper

Growth and Restructuring Phenomena of Deposits in Particulate Filters

2018-04-03
2018-01-1265
As use of Particulate Filters (PFs) is growing not only for diesel but also for gasoline powered vehicles, the need for better understanding of deposit structure, growth dynamics and evolution arises. In the present paper we address a number of deposit growth and restructuring phenomena within particulate filters with the aim to improve particulate filter soot load estimation. To this end we investigate the dynamic factors that quantify the amount of particles that are stored within the wall and the restructuring of soot deposits. We demonstrate that particle accumulation inside the porous wall is dynamically controlled by the dimensionless Peclet number and provide a procedure for the estimation of parameters of interest such as the loaded filter wall permeability, the wall-stored soot mass at the onset of cake filtration.
Journal Article

Parametric Representation of the Entire Pressure Drop Evolution during Particulate Filter Loading

2020-04-14
2020-01-1433
Improved understanding and compact descriptions of the pressure drop evolution of Particulate Filters (both for diesel and gasoline powered vehicles) are always in demand for intelligent implementations of exhaust emission system monitoring and control. In the present paper we revisit the loading process of a particulate filter focusing on a parametric description of the deep bed-to-cake transition in the light of recent progress in the understanding of soot deposit structure, growth dynamics and evolution. Combining experimental data, simulation models and information theoretic concepts we provide a closed-form representation of the entire evolution of pressure drop (from the initial clean state up to the evolving linear cake growth regime) parameterized in terms of the physical parameters of the system (filter and particle structure/geometry and flow properties).
Technical Paper

The Characterization of the Hydrocarbon and Sulfate Fractions of Diesel Particulate Matter

1978-02-01
780111
One of the more objectionable aspects of the use of diesel engines has been the emission of particulate matter. A literature review of combustion flames, theoretical calculations and dilution tunnel experiments have been performed to elucidate the chemical and physical processes involved in the formation of diesel particulate matter. A comparative dilution tunnel study of diluted and undiluted total particulate data provided evidence supporting calculations that indicate hydro-carbon condensation should occur in the tunnel at low exhaust temperatures. The sample collection system for the measurement of total particulate matter and soluble sulfate in particulate matter on the EPA 13 mode cycle is presented. A method to correct for hydrocarbon interferences in the EPA barium chloranilate method for the determination of sulfate in particulate matter is discussed.
X