Refine Your Search




Search Results


(R) Dedicated Short Range Communications (DSRC) Message Set Dictionary

This SAE Standard specifies a message set, and its data frames and data elements specifically for use by applications intended to utilize the 5.9 GHz Dedicated Short Range Communications for Wireless Access in Vehicular Environments (DSRC/WAVE, referenced in this document simply as “DSRC”), communications systems. Although the scope of this Standard is focused on DSRC, this message set, and its data frames and data elements have been designed, to the extent possible, to also be of potential use for applications that may be deployed in conjunction with other wireless communications technologies. This Standard therefore specifies the definitive message structure and provides sufficient background information to allow readers to properly interpret the message definitions from the point of view of an application developer implementing the messages according to the DSRC Standards.

15 Pole Connector Between Towing Vehicles and Trailers with 12 Volt Nominal Supply

This SAE standard establishes the minimum construction and performance requirements for a 15 Pole Connector Between Towing Vehicles and Trailers, for trucks, trailers, and dollies in conjunction with SAE J2742 “Combination 11 Conductors and 4 Pairs ECBS Cable”. The connector accommodates both power and ISO 11992-1 signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.

15 Pole Connector Between Towing Vehicles and Trailers with 12 Volt Nominal Supply

This SAE standard establishes the minimum construction and performance requirements for a 15 Pole Connector Between Towing Vehicles and Trailers, for trucks, trailers, and dollies in conjunction with SAE J2742. The connector accommodates both power and ISO 11992-1 signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
Technical Paper

1D Thermo-Fluid Dynamic Simulation of a High Performance Lamborghini V12 S.I. Engine

This paper describes the development and application of the 1D thermo-fluid dynamic research code GASDYN to the simulation of a Lamborghini 12 cylinder, V 60°, 6.2 L automotive S.I. engine. The model has been adopted to carry out an integrated simulation (thermodynamic, fluid dynamic and chemical) of the engine coupled to its intake and exhaust manifolds, in order to predict not only the wave motion in the ducts and its influence on the cylinder gas exchange process, but also the in-cylinder combustion process and the pollutant emission concentration along the exhaust system. The gas composition in the exhaust pipe system is dictated by the cylinder discharge process, after the calculation of the combustion via a thermodynamic multi-zone model, based on a “fractal geometry” approach.
Technical Paper

3-D Scanning Vibrometry Enables Efficient Experimental Modal Analysis of Large and Complex Structures for NVH-Optimised Vehicles

In the design and development of modern cars with respect to comfort, silence and safety, state of the art experimental modal analysis is one of the essential development tools. Due to the large amount of degrees of freedom of such a large and complex system like a car with all its components, a complete simulation by FEM can not be realised easily and requires an enormous expenditure of work and calculations. In addition the simulations are based on assumed system parameters and thus the vibration behaviour of the resulting prototypes often is not completely identical to the simulated model. In contrast to conventional measurements with accelerometers, the 3-D Scanning Vibrometer enables fast and efficient non-contact measurements of the in-plane and out-of-plane vibration behaviour at all optical accessible surfaces. The method easily allows to increase the number of measured points to obtain a high measurement point density.
Technical Paper

3D Design and Surface Mapping of Disc Brake Pad for High Speed Train Using FEA

Recurrently, the increase in production of high-speed trains worldwide has become a confirmed fact. Seeking to use the high-speed trains locally to link the capital of Egypt “Cairo” with the new industrial cities has become a national requirement. Modeling 3D surface maps using finite element analysis (FEA) is one of the most important mechanical design tools for frictional parts to facilitate the manufacture of brake systems for heavy duty vehicles, especially high-speed trains due to difficult working conditions. In this paper, we presented simulate 3D surface maps for proposed frictional material pad using FEA at certain design parameters and experimental result conductions. The typical surface characteristics of disc brake pad are compared with commonly used materials in railway and vehicle brakes in Egypt.
Technical Paper

4-Sensor 2-Channel Anti-Lock System for FWD Cars

The possibility of 2 Channel anti-lock system, which controls each of two independent hydraulic circuits of diagonal split braking system of FWD car seperately, were studied. Theoretical investigation suggested two out of four possible control logics to be promising and they were proved to be practically satisfactory through vehicle test. This system is almost as effective as expensive 3-channel or 4-channel system, when the braking force distribution between front and rear axles is correct as required by EEC Braking regulation. Under extreme condition that rear wheels lock earlier than fronts, the compromise between stopping distance and stability is necessary.
Technical Paper

A 5 Phase Brake Insulator Engineering Selection Process

Brake squeal signatures (2 kHz to 18 kHz) have tonal content highly dependent on the specific brake system structural architecture. The challenge in minimizing squeal involves correctly identifying the conditions (temperature, apply pressure, rotor speed as some basic parameters) of occurrence, defining the underlying structural dynamics of the system and applying appropriate suppression solutions. The quantitative metric of improvement is the cumulative event percentage of occurrence. Design variables of the brake system and performance attribute targets extend the challenge beyond the level of just reducing noise. Consideration of material costs, manufacturing/assembly factors, durability, thermal management as well as other factors narrow the solution space significantly. Compressed late stage development is not uncommon in reaching acceptable levels of performance and is a primary reason for following a well defined process flow with provision for alternative solutions.
Technical Paper

A Band Variable-Inertia Flywheel Integrated-Urban Transit Bus Performance

By means of computer simulation, the potential of a Band Variable-Inertia Flywheel (BVIF) as an energy storage device for a diesel engine city bus is evaluated. Replacing both a fixed-inertia flywheel (FIF) and a continuously variable transmission (CVT), the BVIF is capable of accelerating a vehicle from rest to a nearly-constant speed, while recovering part of the kinetic energy normally dissipated through braking of the vehicle. The results are compared with that of conventionally-powered bus. A fuel saving of up to 30 percent is shown with the BVIF-integrated system. The regenerative braking system reduces brake wear by a factor of five in comparison with the conventional vehicle.
Technical Paper

A Basic Overview on Brake Disc Wear

Wear of brake disc is normally faced with sophisticated experimental methods, a basic overview on the phenomena related to disc wear is presented in this paper. DTV consists in a heterogeneous wear of the disc surface and it is caused by two factors: run-out and the mechanism of disc wear. The importance of DTV is due to the vehicle vibrations that high DTV values can cause during braking. A model, that considers iron oxide layer evolution on disc surface, can evidence some of the principal characteristics of disc wear. In this model the wear rates of disc gray cast iron and iron oxide layer are considered as some of the principal factors in DTV evolution, as well as the kinetics of the chemical reactions involved.
Technical Paper

A Braking Force Distribution Strategy in Integrated Braking System Based on Wear Control and Hitch Force Control

A braking force distribution strategy in integrated braking system composed of the main braking system and the auxiliary braking system based on braking pad wear control and hitch force control under non-emergency braking condition is proposed based on the Electronically Controlled Braking System (EBS) to reduce the difference in braking pad wear between different axles and to decrease hitch force between tractors and trailers. The proposed strategy distributes the braking force based on the desired braking intensity, the degree of the braking pad wear and the limits of certain braking regulations to solve the coupling problems between braking safety, economical efficiency of braking and the comfort of drivers. Computer co-simulations of the proposed strategy are performed.
Technical Paper

A CFD Investigation of Aerodynamic Effects of Wheel Center Geometry on Brake Cooling

Improving brake cooling has commanded substantial research in the automotive sector, as safety remains paramount in vehicles of which brakes are a crucial component. To prevent problems like brake fade and brake judder, heat dissipation should be maximized from the brakes to limit increasing temperatures. This research is a CFD investigation into the impact of existing wheel center designs on brake cooling through increased cross flow through the wheel. The new study brings together the complete wheel and disc geometries in a single CFD study and directly measures the effect on brake cooling, by implementing more accurately modeled boundary conditions like moving ground to replicate real conditions correctly. It also quantifies the improvement in the cooling rate of the brake disc with a change in wheel design, unlike previous studies. The axial flow discharge was found to be increased to 0.47 m3/min for the suggested design in comparison to 0.04 m3/min for traditional design.
Journal Article

A Case Study of Reaction Time Reduction of Vehicle Brake System

There has to be a good co-relation/ relationship between the pedal effort applied, pedal travel, deceleration level achieved and stopping distance for “good brake feel”. Brake feel also depend upon the time lag between the force applied on brake pedal and the response of braking system. Hence “brake feel” can be improved by reducing the response time of the brake system. Many vehicles are having “poor brake feel” complaints, pertaining to the above mentioned reasons. This paper relates to an improved brake system for automobile in which reduction in reaction time was done by artificially increasing differential pressure head across vacuum booster diaphragm. Brake booster is given an input of compressed air to the valve body during actuation, thereby increasing the differential pressure across the diaphragm. The compressed air is bled from turbocharger-intercooler of the vehicle which is stored in a reservoir, with one way valve, while cruising.
Technical Paper

A Case Study: Improvements in Automotive Motion Simulators Using Six Sigma Methodologies

Newer automobiles have complex dynamic and stability controls due to regulations, competition, and safety concerns. More systems require testing at the subcomponent level to ensure proper operation in the final vehicle assembly. Many of the stability and navigation features originally designed for aircraft components are now being incorporated into automobiles. Certain types of motion test simulators were originally designed for testing aircraft sensors as: gyroscopes, inertial navigation systems (INS), inertial measurement units (IMU), and attitude heading and reference systems (AHARS) This same type of equipment is now used for automotive testing as: airbag fuse sensors, anti-skid sensors, rollover sensors, vehicle stabilization systems, active suspension sensors, and navigation systems.
Journal Article

A Comparative Analysis on Engine Performance of a Conventional Diesel Fuel and 10% Biodiesel Blends Produced from Coconut Oils

This paper presents engine performance and emissions of coconut oil-derived 10% biodiesel blends in petroleum diesel demonstrating simultaneous reduction of smoke and NOx emissions and increased brake power. The experiments were performed in a single-cylinder version of a light-duty diesel engine for three different fuels including a conventional diesel fuel and two B10 fuels of chemical-catalyst-based methyl-ester biodiesel (B10mc) and biological-catalyst-based ethyl-ester biodiesel (B10eb). The engine tests were conducted at fixed speed of 2000 rpm and injection pressure of 130 MPa. In addition to the fuel variation, the injection timing and rate of exhaust gas recirculation (EGR) were also varied because they impact the combustion and thus the efficiency and emissions significantly.
Technical Paper

A Comparative Review of Fuel Cell Vehicles (FCVs) and Hybrid Electric Vehicles (HEVs) Part I: Performance and Parameter Characteristics, Emissions, Well-to-Wheels Efficiency and Fuel Economy, Alternative Fuels, Hybridization of FCV, and Batteries for Hybrid Vehicles

Currently, almost all the activities in the development of new generation of vehicles are focused on fuel cell powered vehicles (FCVs) and hybrid electric vehicles (HEVs). However, there are still uncertainties as to which provides the maximum benefits in terms of performance, energy savings and impact on the environment. This paper compares the performance and parameter characteristics of FCVs and HEVs with a view towards an objective assessment of the relative performance of these vehicles. In particular, this paper reviews major characteristics of FCVs as zero or ultra-low emission vehicles (ZEV/ULEVs), their presumed high efficiency and potential for using alternative fuels, while also considering their limited performance at high power demands.
Technical Paper

A Comparative Study by Vehicle Testing of Copper Alloy and Gray Iron Brake Discs

Automotive friction materials are composites containing three kinds of components: an organic binder, fiber for reinforcement, and property modifiers. At low braking temperatures, the wear rate of the friction materials is controlled primarily by abrasive and adhesive mechanisms. At higher braking temperatures, the wear rate increases exponentially with increasing temperature due to thermal degradation of the binder and other components, and the exponential wear rate is frequently accompanied by brake fade. Thus, one method of reducing thermal wear and fade tendency is to lower the temperature at the rotor/friction material interface. Since the rate of heat transfer from the interface is mostly dependent upon the conductive and convective modes, a rotor of high thermal conductivity will have a significant advantage over a rotor of low conductivity, if the heat capacity remains the same.
Technical Paper

A Comparative Study of Four Alloys for Automotive Brake Drums

A drag dynamometer was used to evaluate the performance of automotive brake drums made from four kinds of materials with different thermal conductivities. In the order of decreasing thermal conductivity they are chromium copper, aluminum/cast iron composite, cast iron, and nickel-aluminum bronze. All of the drums were of the standard configuration used in SAE J 661a, or closely approximated it. The drums were run in conjunction with three types of lining materials: nonabrasive, moderately abrasive, and highly abrasive. Temperatures near the lining/drum interface, coefficients of friction, and lining wear were measured and compared. For a given amount of work done, the temperature near the drum surface was found to be lowest for the chromium copper drums, with progressively higher temperatures in the aluminum/cast iron composite, nickel-aluminum bronze, and cast iron drums. Relative lining wear and coefficient of friction varied with the type of lining tested.