Refine Your Search




Search Results

Technical Paper

14 Design and Analysis of Two Wheeler Engine Gearbox through Simulation to Reduce the Development Time and Cost

An efficient design of the gearbox is crucial for the expected performance of the vehicle both in terms of life and NVH. This involves design and analysis of gears, shafts, bearings, gear layout and speed ratios. Conventionally gears, shafts and bearings are designed and analysed independently. When the design of these parts change, their effect on related parts is estimated separately, leading to loss of time. Alternately, an integrated approach through simulation is adopted for the new two wheeler's gearbox by modeling on Romax designer software, consisting of shafts, bearings and gears. For the target load cycle, gear and bearing lives, shaft deflections and stresses are estimated. While the targets for stresses, deflections and lives are set logically and with experience, these are also compared with those of reference vehicle by creating and analysing reference gearbox model.
Technical Paper

145 - 210 Horsepower Agricultural Tractor Noise Reduction Program

This paper summarizes the techniques and guidelines which were used to reduce the driver perceived noise level of a 145-210 HP series of agricultural tractors. Graphs of case study test results and comments on subjective noise quality are provided to guide the acoustic novice through the complexities of the vehicle sound environment in a methodical problem solving format.
Technical Paper

15 Years of Transfer Path Analysis VINS in the Vehicle NVH Development - Selected Results

Transfer path analysis is a powerful tool to support the vehicle NVH development. On the one hand it is a fast method to gain an overview of the complex interplay in the vehicle noise generation process. On the other hand it can be used to identify critical noise paths and vehicle components responsible for specific noise phenomena. FEV has developed several tools, which are adapted to the considered noise phenomena: Powertrain induced interior noise and vibration is analyzed by VINS (Vehicle Interior Noise Simulation), which allows the deduction of improvement measures fast enough for application in the accelerated vehicle development process. Further on vehicle/powertrain combinations not realized in hardware can be evaluated by virtual installation of the powertrain in the vehicle, which is especially interesting in the context of engine downsizing from four to three or six to four cylinders.
Technical Paper

19 Separation of Combustion Noise using Transient Noise Generation Model

In a running engine, various impacts are excitation sources for structural vibrations and engine noises. Engine noises are classified, depending on their excitation sources, into the combustion noise, the combustion induced mechanical noise and the mechanical noise. It is difficult to measure such noises separately because some impacts occur closely in time and space. In this paper, a transient noise generation model of an engine was proposed considering vibration and its damping of engine structure. The present model was verified through the single explosion excitation experiment for a stationary engine. Using the noise generation model, the combustion noise was separated from the total noise radiating from a running four-stroke gasoline engine for motorcycles. It was found that the combustion noise had larger power at lower frequencies than higher frequencies. However, its contribution to the total engine noise was relatively small.
Technical Paper

1998 POLARIS INDY TRAIL: An Entry by Minnesota State University, Mankato in the “Clean Snowmobile Challenge 2000”

A student team from Minnesota State University, Mankato's Automotive Engineering Technology program entered the Clean Snowmobile Challenge 2000. A 1998 Polaris Indy Trail was converted to indirect fuel injection running on a computer controlled closed loop fuel system. Also chassis, exhaust, and hood design modifications were made. The snowmobile was designed to compete in eight events. These events included acceleration, emissions, hill climb, cold start, noise, fuel economy/range, handling/driveability, and static display. The snowmobile modifications involved every aspect of the snowmobile with special emphasis on emissions and noise. Laboratory testing led to the final design. This paper details the modifications and test results.
Technical Paper

1D Modeling of Thermal Expansion Valve for the Assessment of Refrigerant-Induced Noise

Without engine noise, the cabin of an electric vehicle is quiet, but on the other hand, it becomes easy to perceive refrigerant-induced noise in the automotive air-conditioning (A/C) system. When determining the A/C system at the design stage, it is crucial to verify whether refrigerant-induced noise occurs in the system or not before the real A/C systems are made. If refrigerant-induced noise almost never occurs during the design stage, it is difficult to evaluate by vehicle testing at the development stage. This paper presents a 1D modeling methodology for the assessment of refrigerant-induced noise such as self-excitation noise generated by pressure pulsation through the thermal expansion valve (TXV). The GT-SUITE commercial code was used to develop a refrigerant cycle model consisting of a compressor, condenser, evaporator, TXV and the connecting pipe network.
Technical Paper

1st Order Boom Noise Relationship to Driveline Imbalance

Two vehicle level test methods were developed that illustrate the relationship between 1st order noise in a cabin, and driveline imbalance contributors. At the launch of a new 2005 4WD sport utility vehicle program, a significant boom noise complaint was observed on many vehicles between 55-70 mph. The full time, electronic actively controlled, torque biasing transfercase was intensely reviewed as a potential source of excessive torque induced imbalance. Testing of the transfercase was performed on imbalance measurement stands, dynamometers, and in the vehicle. The result was the identification of two issues. First was that two internal to the transfercase parts were found to have excessive runout. Second was that there was a lack of vehicle correlation to transfercase imbalance. An extensive effort involving over 50 vehicles of the same model was pursued to find the source of the problem.
Technical Paper

20 A Combined Experimental and Numerical Approach for Motorcycle Crank Noise: Experimental Validation

The demands for comfort and a cleaner environment have been increasing for the past years for motorcycle as well as car manufacturers. With the need to decrease the time-to-market, there is a clear drive to apply CAE-based methods in order to evaluate new designs and to propose design changes that solve any identified problems. More specifically, the demands on the comfort of the rider are not only related to ride & handling and vibration levels(1), but also to the noise levels generated by the motorcycle. This paper presents the virtual modeling of one-cylinder engine of a motorcycle that identifies the mechanism behind the generation of an annoying noise. Furthermore, different possible design changes were evaluated in order to solve the problem. A combined experimental and numerical approach was followed to achieve this. Experiments were used to identify important parameters that determine the engine behavior and thus are critical for the modeling of such an engine.
Technical Paper

2002 Pontiac Montana Frequency Improvements Employing Structural Foam

This paper documents a joint development process between General Motors and Dow Automotive to improve primary body structure frequencies on the GM family of midsize vans by utilizing cavity-filling structural foam. Optimum foam locations, foam quantity, and foam density within the body structure were determined by employing both math-based modeling and vehicle hardware testing techniques. Finite element analysis (FEA) simulations of the Body-In-White (BIW) and “trimmed body” were used to predict the global body structure modes and associated resonant frequencies with and without structural foam. The objective of the FEA activity was to quantify frequency improvements to the primary body structure modes of matchboxing, bending, and torsion when using structural foam. Comprehensive hardware testing on the vehicle was also executed to validate the frequency improvements observed in the FEA results.
Technical Paper

24 Noise, Emissions and Fuel Economy Investigation on a Small DI Diesel Using Taguchi Methods

To provide optimal performance of a small DI diesel in relation to noise, emissions and fuel economy, an experimental investigation was carried out using Taguchi methods. A single cylinder 3.5 kW diesel was selected for performance test at different engine speeds, loads and static injection timings. These controlled parameters were varied at three levels and the resulting changes in response variables viz. engine noise, smoke, HC, NOx, CO, CO2 emissions and fuel economy (b.s.f.c) were observed. The levels for low noise, smoke, emissions and b.s.f.c could be predicted and relevant combination of controlled parameters specified. Confirmation engine runs were carried out and the results showed good agreement with the predicted optimized quantities of interest based on Taguchi analysis. The effect of engine parameters to the above responses was evaluated in terms of percent contributions by using analysis of variance.
Technical Paper

32 Development of Silent Chain Drive System for Motorcycles

Examining the noise reduction of a motorcycle, the requirement of an effective method of reducing a drive chain noise has been a pending issue similarly to noise originating from an engine or exhaust system, etc. Through this study, it became clear that the mechanism of chain noise could be classified into two; low frequency noise originated from cordal action according to the degree of chain engagement and high frequency noise generated by impact when a chain roller hits sprocket bottom. An improvement of urethane resin damper shape, mounted on a drive side sprocket, was effective for noise reduction of the former while our development of a chain drive that combined an additional urethane resin roller with an iron roller worked well for the latter. The new chain system that combined this new idea has been proven to be capable of reducing the chain noise to half compared with a conventional system.
Technical Paper

360° vs. 270° vs. 180°: The Difference of Balancing a 2 Cylinder Inline Engine: Design, Simulation, Comparative Measurements

Beside the automotive industry, where 2-cylinder inline engines are catching attention again, twin-cylinder configurations are quite usual in the small engine world. From stationary engines and range-extender use to small motorcycles up to big cruisers and K-Cars this engine architecture is used in many types of applications. Because of very good overall packaging, performance characteristics and not least the possibility of parts-commonality with 4-cylinder engines nearly every motorcycle manufacturer provides an inline twin in its model range. Especially for motorcycle applications where generally the engine is a rigid member of the frame and vibrations can be transferred directly to the rider an appropriate balancing system is required.
Technical Paper

3D Aeroacoustics Simulation of a Complete Bus Exhaust System

Health related problems in over populated areas are a major concern and as such, there are specific legislations for noise generated by transport vehicles. In diesel powered commercial vehicles, the source for noise are mainly related to rolling, transmission, aerodynamics and engine. Considering internal combustion engine, three factors can be highlighted as major noise source: combustion, mechanical and tailpipe. The tailpipe noise is considered as the noise radiated from the open terminations of intake and exhaust systems, caused by both pressure pulses propagating to the open ends of the duct systems, and by vortex shedding as the burst leaves the tailpipe (flow generated noise). In order to reduce noise generated by vehicles, it is important to investigate the gas interactions and what can be improved in exhaust line design during the product development phase.
Technical Paper

3d-Elastohydrodynamic Simulation Model for Structure-Borne Noise Analyses of a DI Diesel Engine

The present article is concerned with the investigation of the engine noise induced by the piston slap of an actual passenger car Diesel engine. The focus is put on the coherence of piston secondary movement, impact of the piston on the cylinder liner, generated structure-borne noise excitation of the engine structure and the occurring acceleration on the engine surface. Additionally, the influence of a varying piston-pin offset and piston clearance is evaluated. The analyses are conducted using an elastohydrodynamic multi-body simulation model, taking into account geometry, stiffness and mass information of the single components as well as considering elastic and hydrodynamic behavior of the piston-liner contact. A detailed description of the simulation model will be introduced in the article. The obtained results illustrate the piston secondary motion and the related structure-borne noise on the engine surface for several piston-pin offsets and piston clearances.
Technical Paper

44 Theoretical Predictions and Experimental Verification of Pass-by Noise Reduction for Small Four-Stroke Motorcycle

To meet stringent noise regulations by governing body and customer expectations for quieter machines, design of low noise-emitting vehicle is becoming increasingly critical. Noise from small capacity four-stroke motorcycle is ranked for its noise intensity emitted, by sound intensity technique. Generally, noise form exhaust ranks first among the sources. Theoretical predictions were made to determine the frequency band being attenuated by the exhaust system. Design of Experiments (L25 Fractional factorial -6 factors and 5 levels), a statistical technique, is used for determining critical parameters, which increase the transmission loss of the exhaust system for four-stroke engine. Best combination of design parameters for maximum transmission loss is selected using Analysis of Variance (ANOVA). Experimental exhaust systems were built based on the theoretical predictions, pass-by noise spectrum were captured and compared.
Technical Paper

5480 Reach Truck-A New Concept in Reach Track Design

The new 5480 Reach Truck, designed at Dynamic Industries, introduces a movable frame between the main frame and the telescopic boom. The use of this movable frame allows the usually fixed boom pivot to be elevated for greater lifting heights with smaller boom sections. By combining the motions of the boom and the movable frame, horizontal motion at the boom tip is possible without moving the truck. With the movable frame, the total machine height and length can be reduced for a given lifting goal. Another advantage of the movable frame is the ability to reach further below grade than is now possible in the industry. The 5480 Reach Truck has a maximum lift of 54 feet (16.5 meters) and can reach 24 feet (7.3 meters) below-grade.
Technical Paper

56 Development of two-cylinder liquid-cooled utility gasoline engine models with twin balancer shafts

The new small and lightweight 2-cylinder liquid-cooled OHC gasoline engines were developed. These new engines are featuring high output, low vibration and noise radiation and so able to improve the comfortableness and amenity of applied utility machines. In this paper, the features of the new engines and the process to realize development targets are introduced. The basic structure adopted on the new engines is a liquid-cooled, inline 2-cyilinder layout with 360-degree firing intervals, twin balancer shafts, and an overhead camshaft that is driven by a cogged belt. Also various parts made of aluminum alloy and plastics could make the engine lighter. By these measures, the new engines could satisfy their hardest development targets, and realize their easy installation, higher versatility, and have the excellent features such as compact size, lightweight, high output, low exhaust gas emission and low vibration and noise radiation.
Technical Paper

6 Speed Automatic Transmission Vibration Magnitude Prediction and Whine Noise Improvement through Transmission System Modeling

As automotive technology has been developed, gear whine has become a prominent contributor for cabin noise as the masking has been decreased. Whine is not the loudest source, but it is of high tonal noise which is often highly unpleasant. The gear noise originates at gear mesh. Transmission Error acts as an excitation source and these vibrations pass through gears, shafts and bearings to the housing which vibrates to produce noise on surrounding air. As microgeometry optimization target to reduce the fundamental excitation source of the noise, it has been favored method to tackle gear whine noise, especially for manual transmission. However, practicality of microgeometry optimization for the planetary gear system has been still in question, because of complex system structure and interaction among multi mesh gear sets make it hard to predict and even harder to improve. In this paper, successful case of whine noise improvement by microgeometry is presented.
Technical Paper

6 Speed Transverse Manual Gearbox for High Torque Application

Weight reduction and high transmission efficiency demands are getting heavier to manual transmission (MT) for vehicle driving and fuel economy performance. Also comfortable shift feeling and low gear noise level are continuously required by customer because those sensitivity performances are directly recognized by driver which can determine the transmission's merchantability. Newly developed high torque capacity MT is based on serial transmission BG6 which is adopted into a lot of customer' vehicle. This new MT is weight reduced, shift feeling and gear noise performance are highly improved that keeps strong competitiveness in the future. Concerning shift feeling, its smoothness, force balance and cross shift performance are improved and optimized. Also for low gear noise performance, it was reduced to the level which can have advantage to competitor and highly comfortable for passenger vehicle. Those improvement technologies are reported as follows.