Refine Your Search




Search Results

Viewing 1 to 20 of 11573
Journal Article

(R)evolution of E/E Architectures

This paper presents an overview of the evolution & revolution of automotive E/E architectures and how we at Bosch, envision the technology in the future. It provides information on the bottlenecks for current E/E architectures and drivers for their evolution. Functionalities such as automated driving, connectivity and cyber-security have gained increasing importance over the past few years. The importance of these functionalities will continue to grow as these cutting-edge technologies mature and market acceptance increases. Implementation of these functionalities in mainstream vehicles will demand a paradigm shift in E/E architectures with respect to in-vehicle communication networks, power networks, connectivity, safety and security. This paper expounds on these points at a system level.
Technical Paper

100% LPG Long Haul Truck Conversion - Economy and Environmental Benefits

Advanced Vehicle Technologies (AVT), a Ballarat Australia based company, has developed the World's first diesel to 100% LPG conversion for heavy haul trucks. There is no diesel required or utilized on the trucks. The engine is converted with minimal changes into a spark ignition engine with equivalent power and torque of the diesel. The patented technology is now deployed in 2 Mercedes Actros trucks. The power output in engine dynamometer testing exceeds that of the diesel (in excess of 370 kW power and 2700 Nm torque). In on-road application the power curve is matched to the diesel specifications to avoid potential downstream power-train stress. Testing at the Department of Transport Energy & Infrastructure, Regency Park, SA have shown the Euro 3 truck converted to LPG is between Euro 4 and Euro 5 NOx levels, CO2 levels 10% better than diesel on DT80 test and about even with diesel on CUEDC tests.
Technical Paper

100-kWe Lunar/Mars Surface Power Utilizing the SP-100 Reactor with Dynamic Conversion

An integration study was performed coupling an SP-100 reactor with either a Brayton or Stirling power conversion subsystem. A power level of 100 kWe was selected for the study. The power system was to be compatible with both the lunar and Mars surface environment and require no site preparation. In addition, the reactor was to have integral shielding and be completely self-contained, including its own auxiliary power for start-up. Initial reliability studies were performed to determine power conversion redundancy and engine module size. Previous studies were used to select the power conversion optimum operating conditions (ratio of hot-side temperature to cold-side temperature). Results of the study indicated that either the Brayton or Stirling power conversion subsystems could be integrated with the SP-100 reactor for either a lunar or Mars surface power application.
Technical Paper

14 Design and Analysis of Two Wheeler Engine Gearbox through Simulation to Reduce the Development Time and Cost

An efficient design of the gearbox is crucial for the expected performance of the vehicle both in terms of life and NVH. This involves design and analysis of gears, shafts, bearings, gear layout and speed ratios. Conventionally gears, shafts and bearings are designed and analysed independently. When the design of these parts change, their effect on related parts is estimated separately, leading to loss of time. Alternately, an integrated approach through simulation is adopted for the new two wheeler's gearbox by modeling on Romax designer software, consisting of shafts, bearings and gears. For the target load cycle, gear and bearing lives, shaft deflections and stresses are estimated. While the targets for stresses, deflections and lives are set logically and with experience, these are also compared with those of reference vehicle by creating and analysing reference gearbox model.
Technical Paper

14/42V - Electrical Power Supply Systems Consequences for Electrical Interconnections and Switches

This paper provides an overview about the consequences of a 14/42 V - Electrical Power Supply System for the Electrical Interconnection and Switching Technology. It presents design guidelines and solutions for connector systems including advanced applications like fuse and relay boxes and gives an overview of those existing connectors already suited for 42 V and even higher voltages. The problem of arcing due to the increased voltage is discussed for the case that mating and unmating under load has to be taken into consideration. Arcing also has a tremendous impact on the design of 42 V proof relays. Therefore, some basic results be presented along with proposals how these problems can be overcome by appropriate designs. Another part of the paper looks at the electrical power supply system itself. Here interconnection techniques for new battery systems are discussed. Finally, the chances for new technologies are highlighted.
Technical Paper

145 - 210 Horsepower Agricultural Tractor Noise Reduction Program

This paper summarizes the techniques and guidelines which were used to reduce the driver perceived noise level of a 145-210 HP series of agricultural tractors. Graphs of case study test results and comments on subjective noise quality are provided to guide the acoustic novice through the complexities of the vehicle sound environment in a methodical problem solving format.
Technical Paper

15 Years of Transfer Path Analysis VINS in the Vehicle NVH Development - Selected Results

Transfer path analysis is a powerful tool to support the vehicle NVH development. On the one hand it is a fast method to gain an overview of the complex interplay in the vehicle noise generation process. On the other hand it can be used to identify critical noise paths and vehicle components responsible for specific noise phenomena. FEV has developed several tools, which are adapted to the considered noise phenomena: Powertrain induced interior noise and vibration is analyzed by VINS (Vehicle Interior Noise Simulation), which allows the deduction of improvement measures fast enough for application in the accelerated vehicle development process. Further on vehicle/powertrain combinations not realized in hardware can be evaluated by virtual installation of the powertrain in the vehicle, which is especially interesting in the context of engine downsizing from four to three or six to four cylinders.
Technical Paper

19 Separation of Combustion Noise using Transient Noise Generation Model

In a running engine, various impacts are excitation sources for structural vibrations and engine noises. Engine noises are classified, depending on their excitation sources, into the combustion noise, the combustion induced mechanical noise and the mechanical noise. It is difficult to measure such noises separately because some impacts occur closely in time and space. In this paper, a transient noise generation model of an engine was proposed considering vibration and its damping of engine structure. The present model was verified through the single explosion excitation experiment for a stationary engine. Using the noise generation model, the combustion noise was separated from the total noise radiating from a running four-stroke gasoline engine for motorcycles. It was found that the combustion noise had larger power at lower frequencies than higher frequencies. However, its contribution to the total engine noise was relatively small.
Technical Paper

1963 Pure Oil Performance Trials

Background of the Pure Oil performance trials on six classes of automobiles is presented and the evolution of test requirements described. Three tests are run: the economy test to establish how far a vehicle can go over a prescribed course on one gallon of gasoline; the acceleration test which determines acceleration time from 25 to 70 mph in seconds; and the braking test where stopping distance in feet is measured for a stop from 60 mph. Each test is described from the point of view of rules, recording instruments, and penalties for infractions of rules. Test results are presented.
Technical Paper

1964 Pure Oil Performance Trials

A review of the Pure Oil Performance Trials conducted at Daytona International Speedway are presented. Background information pertaining to conducting of tests, design of the equipment, and instrumentation required for the various events are discussed. The performance trials have evolved into three basic tests -- Economy, Acceleration, and Braking. The objective of the Performance Trials is to provide data that motorists can utilize in evaluating new cars and selecting new models.
Technical Paper

1998 POLARIS INDY TRAIL: An Entry by Minnesota State University, Mankato in the “Clean Snowmobile Challenge 2000”

A student team from Minnesota State University, Mankato's Automotive Engineering Technology program entered the Clean Snowmobile Challenge 2000. A 1998 Polaris Indy Trail was converted to indirect fuel injection running on a computer controlled closed loop fuel system. Also chassis, exhaust, and hood design modifications were made. The snowmobile was designed to compete in eight events. These events included acceleration, emissions, hill climb, cold start, noise, fuel economy/range, handling/driveability, and static display. The snowmobile modifications involved every aspect of the snowmobile with special emphasis on emissions and noise. Laboratory testing led to the final design. This paper details the modifications and test results.
Technical Paper

1D Modeling of Thermal Expansion Valve for the Assessment of Refrigerant-Induced Noise

Without engine noise, the cabin of an electric vehicle is quiet, but on the other hand, it becomes easy to perceive refrigerant-induced noise in the automotive air-conditioning (A/C) system. When determining the A/C system at the design stage, it is crucial to verify whether refrigerant-induced noise occurs in the system or not before the real A/C systems are made. If refrigerant-induced noise almost never occurs during the design stage, it is difficult to evaluate by vehicle testing at the development stage. This paper presents a 1D modeling methodology for the assessment of refrigerant-induced noise such as self-excitation noise generated by pressure pulsation through the thermal expansion valve (TXV). The GT-SUITE commercial code was used to develop a refrigerant cycle model consisting of a compressor, condenser, evaporator, TXV and the connecting pipe network.
Technical Paper

1st Order Boom Noise Relationship to Driveline Imbalance

Two vehicle level test methods were developed that illustrate the relationship between 1st order noise in a cabin, and driveline imbalance contributors. At the launch of a new 2005 4WD sport utility vehicle program, a significant boom noise complaint was observed on many vehicles between 55-70 mph. The full time, electronic actively controlled, torque biasing transfercase was intensely reviewed as a potential source of excessive torque induced imbalance. Testing of the transfercase was performed on imbalance measurement stands, dynamometers, and in the vehicle. The result was the identification of two issues. First was that two internal to the transfercase parts were found to have excessive runout. Second was that there was a lack of vehicle correlation to transfercase imbalance. An extensive effort involving over 50 vehicles of the same model was pursued to find the source of the problem.
Technical Paper

20 A Combined Experimental and Numerical Approach for Motorcycle Crank Noise: Experimental Validation

The demands for comfort and a cleaner environment have been increasing for the past years for motorcycle as well as car manufacturers. With the need to decrease the time-to-market, there is a clear drive to apply CAE-based methods in order to evaluate new designs and to propose design changes that solve any identified problems. More specifically, the demands on the comfort of the rider are not only related to ride & handling and vibration levels(1), but also to the noise levels generated by the motorcycle. This paper presents the virtual modeling of one-cylinder engine of a motorcycle that identifies the mechanism behind the generation of an annoying noise. Furthermore, different possible design changes were evaluated in order to solve the problem. A combined experimental and numerical approach was followed to achieve this. Experiments were used to identify important parameters that determine the engine behavior and thus are critical for the modeling of such an engine.
Technical Paper

2002 Pontiac Montana Frequency Improvements Employing Structural Foam

This paper documents a joint development process between General Motors and Dow Automotive to improve primary body structure frequencies on the GM family of midsize vans by utilizing cavity-filling structural foam. Optimum foam locations, foam quantity, and foam density within the body structure were determined by employing both math-based modeling and vehicle hardware testing techniques. Finite element analysis (FEA) simulations of the Body-In-White (BIW) and “trimmed body” were used to predict the global body structure modes and associated resonant frequencies with and without structural foam. The objective of the FEA activity was to quantify frequency improvements to the primary body structure modes of matchboxing, bending, and torsion when using structural foam. Comprehensive hardware testing on the vehicle was also executed to validate the frequency improvements observed in the FEA results.
Technical Paper

2005 Ford GT Electrical & Electronics

The Ford GT Program Team was allocated just 22 months from concept to production to complete the Electrical and Electronics systems of the Ford GT. This reduced vehicle program timing - unlike any other in Ford's history -- demanded that the team streamline the standard development process, which is typically 54 months. This aggressive schedule allowed only 12 weeks to design the entire electrical and electronic system architecture, route the wire harnesses, package the components, and manufacture and/or procure all components necessary for the first three-vehicle prototype build.
Technical Paper

2006 Chevrolet Corvette C6 Z06 Aerodynamic Development

This paper is intended to give a general overview of the key aerodynamic developments for the 2006 Chevrolet Corvette C6 Z06. Significant computational and wind tunnel time were used to develop the 2006 Z06 to provide it with improved high speed stability, increased cooling capability and equivalent drag compared to the 2004 Chevrolet Corvette C5 Z06.

2013 Passenger Car Yearbook

Each year car manufacturers release new production models that are unique and innovative. The production model is the result of a lengthy process of testing aerodynamics, safety, engine components, and vehicle styling. The new technologies introduced in these vehicles reflect changing standards as well as trends of the market. From Acura to Volvo, this book provides a snapshot of the key engineering concepts and trends of the passenger vehicle industry over the course of a year. For each of the 43 new production models, articles from Automotive Engineering International (AEI) magazine detail technology developments as well as a comprehensive look at the 2013 passenger car models. This book provides those with an interest in new vehicles with all the information on the key automotive engineering and technology advancements of the year.