Refine Your Search

Topic

Search Results

Standard

AEROSPACE LANDING GEAR SYSTEMS TERMINOLOGY

1997-01-01
HISTORICAL
AIR1489A
This report has been compiled by the Landing Gear Systems Terminology panel of SAE Committee A-5 (Aerospace Landing Gear Systems). It represents an effort to gather together those terms commonly used within the discipline.
Standard

Active Safety System Sensors

2017-11-30
CURRENT
J3088_201711
The current document is a part of an effort of the Active Safety Systems Committee, Active Safety Systems Sensors Task Force whose objectives are to: a Identify the functionality and performance you could expect from active safety sensors b Establish a basic understanding of how sensors work c Establish a basic understanding of how sensors can be tested d Describe an exemplar set of acceptable requirements and tests associated with each technology e Describe the key requirements/functionality for the test targets f Describe the unique characteristics of the targets or tests This document will cover items (a) and (b).
Standard

Aerospace Landing Gear Systems Terminology

2012-05-31
CURRENT
AIR1489C
This report has been compiled by the Landing Gear Systems Terminology Panel of SAE Committee A-5 (Aerospace Landing Gear Systems). It represents an effort to gather together those terms commonly used within the discipline. Some terms are of course common to other disciplines as well. Others, however, are unique in form and/or meaning to the landing gear discipline. The need has been noted to set these terms down and provide a standard definition in order that communication within the discipline may be conducted with a common understanding. Full use has been made of available published information, and a list of references is provided. See also References (a) to (e). Terms listed are usually applicable to a general functional area of landing gear disciplines. These general functional areas include; landing impact, directional ground control, velocity control (acceleration, retardation, and arrestment), structural support, ground flotation, and ground maintenance.
Technical Paper

Aluminum Alloy Deltalloy™ 4032: Elimination of Anodizing for Wear Resistant Applications

1993-03-01
930708
Deltalloy™ 4032 has been developed to eliminate anodizing in applications which have been typically anodized for wear resistance. The combination of silicon and nickel in an aluminum matrix results in exceptional wear resistance. This product is available in screw machine stock form along with selected squares and rectangles. Deltalloy 4032 has already replaced 6262 and 2024 hard coat anodized parts in automotive steering column, brake master cylinder and transmission applications. This alloy can offer cost savings for potential users by eliminating anodizing. In particular, cost savings are realized by eliminating hard-coat anodizing, lower work-in-process inventories and the elimination of secondary grinding after hard-coat anodizing. Information is given on structure, mechanical properties, wear and durability testing along with machinability. In addition, data will be presented on salt spray corrosion testing.
Standard

Brake Hydraulic Component Low Pressure Flow Rate Measurement

2015-08-11
CURRENT
J2994_201508
The SAE Recommended Practice specifies a standardize method and test procedure to measure low pressure differential (< 1bar) brake component brake fluid flow performance. The standard can be utilized for flow measurements across hydraulic brake components such as master cylinders, apply system to chassis controls piping, or other sources of flow restriction in the low pressure side of the hydraulic brake system. It covers materials, manufacturing processes, and general properties required to meet the wide range of service encountered in automotive application. This specification covers only low pressure differential fluid flow and does not include measurement recommended practice for High Pressure differential (> 1 bar) flows.
Standard

Brake Master Cylinder Plastic Reservoir Assembly for Road Vehicles

1994-06-01
HISTORICAL
J2053_199406
This SAE Recommended Practice specifies the performance test procedures and requirements of a plastic reservoir assembly suitable for use on a hydraulic brake master cylinder (reference SAE J1153). Intended usage is for on-road vehicles using brake fluid conforming to fMVSS-116 (DOT 3), and SAE J1703 specifications. This document includes the cap.cover and diaphragm as integral parts of the reservoir assembly. The fluid level sensor (FLS) is also included as an integral part of the assembly. However, additional FLS standards and/or requirements are applicable and necessary which are not covered in this document. This document is intended to provide a recommended practice and minimum performance requirements of current established designs on those reservoir assemblies generally used by individual manufacturers which have demonstrated satisfactory field performance. This document is applicable to new reservoir assemblies for commercial or aftermarket production.
Standard

Brake Master Cylinder Plastic Reservoir Assembly for Road Vehicles

2018-10-28
WIP
J2053
This SAE Recommended Practice specifies the performance test procedures and requirements of a plastic reservoir assembly suitable for use on a hydraulic brake master cylinder (reference SAE J1153). Intended usage is for on-road vehicles using brake fluid conforming to fMVSS-116 (DOT 3), and SAE J1703 specifications. This document includes the cap.cover and diaphragm as integral parts of the reservoir assembly. The fluid level sensor (FLS) is also included as an integral part of the assembly. However, additional FLS standards and/or requirements are applicable and necessary which are not covered in this document. This document is intended to provide a recommended practice and minimum performance requirements of current established designs on those reservoir assemblies generally used by individual manufacturers which have demonstrated satisfactory field performance. This document is applicable to new reservoir assemblies for commercial or aftermarket production.
Standard

Brake Master Cylinder Plastic Reservoir Assembly for Road Vehicles

2006-08-16
CURRENT
J2053_200608
This SAE Standard specifies the performance test procedures and requirements of a plastic reservoir assembly suitable for use on a Hydraulic Brake Master Cylinder (reference SAE J1153). Intended usage is for on-road vehicles using brake fluid conforming to FMVSS 116 (DOT 3), SAE J1703, and SAE J1704 specifications. This document includes the cap/cover and diaphragm as integral parts of the reservoir assembly. The fluid level sensor (FLS) is also included as an integral part of the assembly. However, additional FLS standards and/or requirements are applicable and necessary which are not covered in this document.
Standard

Brake Master Cylinder Reservoir Diaphragm Gasket

1992-03-20
HISTORICAL
J1605_199203
This standard covers performance requirements and methods of test for master cylinder reservoir diaphragm gaskets that will provide a functional seal and protection from outside dirt and water.
Standard

Brake Master Cylinder Reservoir Diaphragm Gasket

2014-11-26
CURRENT
J1605_201411
This SAE Standard covers performance requirements and methods of test for master cylinder reservoir diaphragm gaskets that will provide a functional seal and protection from outside dirt and water.
Technical Paper

Brake Master Cylinder for Secure Brake Feel and Improved System Failure Performance

2003-10-19
2003-01-3304
The brake master cylinder for a heavy weight vehicle which can offer the optimal braking effect and brake feel has been developed. This brake master cylinder has mechanical type work-bore switching mechanism without electric control system between the conventional master cylinder and the conventional vacuum type booster, it combines enough braking effect during a vacuum failure condition with the secure brake feel during the normal condition. This master cylinder operates in large bore during the normal operation and enables secure brake feel. It operates in smaller bore during a vacuum failure condition and enhances braking effect. The work-bore switching unit has a sealing pressure chamber of a large diameter, the work-bore switching action is carried out by open/close operation of the bore switching valve which has built-in this unit.
Technical Paper

Co-Simulation Research of Integrated Electro-Hydraulic Braking System

2016-04-05
2016-01-1647
A program of integrated electro-hydraulic braking system is proposed, and its structural composition and working principle are analyzed. According to the structural and mechanical characteristics of all key components, through some reasonable assumptions and simplifications, a motor, a brake master cylinder, four brake wheel cylinders, solenoid valves and an ESP (Electronic Stability Program) algorithm model is set up and simulations of typical braking conditions are carried out based on the Matlab/Simulink. Finally, after the assembly of each sub-model is complete and combining a vehicle which is set up in CarSim software environment, simulation tests and comprehensive performance analysis of the active safety stability control for a vehicle in double lane change and single lane change situations are carried out respectively. According to the dynamic characteristic curves of system, the effects of different structural and control parameters on braking performance are analyzed.
Technical Paper

Development of Parametrically Integrated Software Platform for Passenger Car Brake System

2019-04-02
2019-01-1231
The hydraulic servo brake system for passenger car plays a central role in occupant protection, which directly affects the automotive active safety and road handling. In this paper, an integrated parameterized software platform of hydraulic servo brake systems is proposed to realize fast and efficient braking system development. At first, according to the structure and working principle of the hydraulic servo brake system, the relationship among amount of fluid required for brake caliper, pedal feel and performance of the brake system is analyzed. Then, based on kinematics and dynamics of the hydraulic servo brake system, a simulation model for analyze pedal feel and amount of fluid required for brake caliper is built in AMESim, which is composed of brake pedal, vacuum booster, brake master cylinder, brake hoses and brake calipers, etc.
Standard

Hydraulic Master Cylinders for Motor Vehicle Brakes-Performance Requirements

1977-04-01
HISTORICAL
J1154_197704
This SAE Standard specifies minimum performance and durability requirements for master cylinder assemblies of current established designs, components of which conform to SAE Standards. It is applicable to new assemblies from commercial production and remanufacture (factory rebuild). These performance requirements are based on those generally used by individual companies in the industry and have demonstrated satisfactory component field performance.
X