Refine Your Search




Search Results

Technical Paper

145 - 210 Horsepower Agricultural Tractor Noise Reduction Program

This paper summarizes the techniques and guidelines which were used to reduce the driver perceived noise level of a 145-210 HP series of agricultural tractors. Graphs of case study test results and comments on subjective noise quality are provided to guide the acoustic novice through the complexities of the vehicle sound environment in a methodical problem solving format.
Technical Paper

20 Questions About Acoustics in Industry

The potential contributions of acoustical technology to manufacturing companies pervade nearly all of its functions from marketing and product planning to design engineering and quality control. Despite this, however, companies generally feel uneasy when they embark on programs to use acoustics in their operations because the technology seems complicated and somehow harder to “get a handle on” than it is in other cases. But the issues of product sound, and the benefits of acoustics on a diagnostic tool are too important to ignore, so in this paper we discuss these issues in a “20 questions” format to help planners, engineers and managers as they proceed to implement acoustical technology in their organizations.
Technical Paper

3-D Loud-Speaker Systems for Automotive Use

In order to reproduce heavy bass with a small diameter loudspeaker for automotive use similar to the intensity and low distortion of a home-use Hi-Fi system, a large volume velocity must be obtained. This is done by lowering the minimum resonant frequency of system and by linearly expanding the amplitude range of diaphragm. We have developed a 3-D woofer system using a centering suspension that consists of four tubes of square cross-section continuously laid in the circumferential direction and a cone suspension that has V-shaped pleats in both of the circumferential and diameter directions for the vibration system. The results are good acoustic characteristics in an automotive cabin that are low in distortion with high output in the low frequency range up to 100Hz.
Technical Paper

360° vs. 270° vs. 180°: The Difference of Balancing a 2 Cylinder Inline Engine: Design, Simulation, Comparative Measurements

Beside the automotive industry, where 2-cylinder inline engines are catching attention again, twin-cylinder configurations are quite usual in the small engine world. From stationary engines and range-extender use to small motorcycles up to big cruisers and K-Cars this engine architecture is used in many types of applications. Because of very good overall packaging, performance characteristics and not least the possibility of parts-commonality with 4-cylinder engines nearly every motorcycle manufacturer provides an inline twin in its model range. Especially for motorcycle applications where generally the engine is a rigid member of the frame and vibrations can be transferred directly to the rider an appropriate balancing system is required.
Technical Paper

3D Beam Forming Measurements Using 3D-Microphone Arrays

Traditional acoustic measurements inside any cavity have historically been conducted with a small number of microphones. By this means it is possible to gain information about parameters like frequencies, orders and sound pressures. However, a space-selective analysis is nearly impossible and it is not feasible to find the position of the sound sources in space in a practical way. While traditional beam forming systems with planar microphone arrays have enlarged the possibilities of acoustic measurements, they do not give comprehensive information about the sound sources in the entire vehicle interior. Therefore, the components of the Acoustic Camera of the GFal were extended by a spherical, acoustically transparent and omni-directional array. A new option is to map onto a common 3D-CAD-model of the object of interest, for instance a vehicle interior. The advantages and disadvantages of 2D- and 3D-mappings will be discussed in the paper.
Technical Paper

3D Inside Vehicle Acoustical Holography

A continuously growing demand comes from the automotive industry in order to get an experimental tool allowing for the optimization of materials and sound insulating products implementation inside the car, so as to propose the best acoustic performance at reduced costs. The acoustical imaging system LORHA provides part of the solution and its demonstrated capability of measuring the acoustic field inside a vehicle makes it an advanced tool for performing extensive studies of the acoustic transparency of car openings. This paper focuses on the methodology and recent operational results obtained within the tight collaboration established between METRAVIB RDS, its partner HUTCHINSON and well known car manufacturers.
Technical Paper

A 3D Linear Acoustic Network Representation of Mufflers with Perforated Elements and Sound Absorptive Material

The acoustics of automotive intake and exhaust systems is typically modeled using linear acoustics or gas-dynamics simulation. These approaches are preferred during basic sound design in the early development stages due to their computational efficiency compared to complex 3D CFD and FEM solutions. The linear acoustic method reduces the component being modelled to an equivalent acoustic two-port transfer matrix which describes the acoustic characteristic of the muffler. Recently this method was used to create more detailed and more accurate models based on a network of 3D cells. As the typical automotive muffler includes perforated elements and sound absorptive material, this paper demonstrates the extension of the 3D linear acoustic network description of a muffler to include the aforementioned elements. The proposed method was then validated against experimental results from muffler systems with perforated elements and sound absorptive material.
Technical Paper

A BE Model for the Analysis of the Effects of Seats in the Passenger Compartment Acoustic Behaviour

The aim of this work is to validate a BE numerical methodology to calculate how the acoustic properties of seats can affect the acoustic behaviour of the passenger compartment of a vehicle. An analytical model, based on the Delany and Bazley approach, was implemented in order to simulate the acoustic impedance of the foam-fabric system. This model has been validated with absorption coefficient measurements on a certain number of foam-fabric combinations. The calculated impedance was used as input for a BEM analysis of the interior cavity of a trimmed vehicle. The measured impedance of trimming components as floor carpet, door panels and parcel shelf were included into the cavity model. The acoustic field due to a known source with and without seats was calculated, in the frequency range 20-400 Hz: the calculated FRFs are in good agreement with the measured ones.
Technical Paper

A Balanced Approach for Wind Noise Control

A balanced approach for wind noise control is presented in this paper. This approach is focused on improved sound insulation and low mass. Initially, the Sound Transmission Loss (STL) of tempered, standard laminated and acoustic laminated glasses for different thicknesses was measured in a STL suite. The critical frequency range was identified from in-vehicle noise measurements. These STL data and in-vehicle results provided the relevant information for a proposal with better acoustic performance and lower mass. The efficiency of this proposal was confirmed with new in-vehicle measurements.
Technical Paper

A Baseline Design for the Space Station Habitat

A baseline design has been selected for the Space Station Habitat (HAB) element. The HAB provides the primary living space to support man's permanent presence in space. The HAB element is designed to provide an environment that maximizes safety and human productivity. This paper outlines some of the current design features including the common core elements and the man-systems hardware. The HAB is arranged in three areas based on crew activity and acoustical considerations. The first area is the quiet zone, which contains the crew quarters. The second area is a buffer zone for noise suppression, where the stowage, medical facilities, and personal hygiene facilities are located. The third area is the active zone which contains the galley/wardroom, laundry and exercise facilities. Each of these three areas will be discussed together with the applicable requirements, the common utility elements, and the man-systems hardware furnishings.
Technical Paper

A Basic Study on Acoustic Response of Non-symmetric Perforated Duct Mufflers

Perforated sections are common constituent elements of the commercial mufflers used to control the acoustic performance of the silencer, guide the flow and hold the absorbing material when incorporated. The effect of the geometrical parameters such as hole diameter and porosity on the acoustic response of non-concentric perforated duct muffler has been investigated experimentally using a modified impulse method. The experimental study showed that the acoustic behavior is basically determined by one single geometrical parameter: the modified porosity defined as the ratio between the perforated area and the tube cross section area. Furthermore, a one-dimensional time-domain simulation of the investigated geometries was performed. In this connection, the perforated tube muffler was modeled by an equivalent acoustic system, composed of simple zero- and one-dimensional elements, which incorporate the main attenuation mechanisms present in the muffler.
Technical Paper

A Bench Test Facility for Engine Muffler Evaluation

The problem associated with laboratory evaluation of muffler acoustical characteristics are complicated both by the acoustical considerations involved in obtaining an adequate noise source and by the ambiguities involved in defining what constitutes quality in a muffler built for general application. In order to quantitatively define the characteristics of quality mufflers, an extensive series of field tests were conducted on a variety of sizes and types of mufflers in conjunction with four engine configurations. Work then turned to the development of a wide band siren noise source and acoustical test system which would simulate the high impedance character of an engine exhaust noise source, and in addition generate the necessary intensity and spectral characteristics required to obtain test data over the range of noise conditions encountered in the field.
Technical Paper

A Boundary Element Formulation for Acoustic Radiation from Axisymmetric Components with Arbitrary Boundary Conditions

This paper presents a computational technique using Boundary Element method for the prediction of sound radiated by axisymmetric bodies with arbitrary boundary conditions. By taking the advantage of the axisymmetric property of the body the three dimensional integral formulation is reduced to one dimensional integral along the generator of the body. The arbitrary boundary conditions is expanded in Fourier series with a period of 2π. The integral equation is solved using superposition principle involving each term of the series. By adding the result associated with each term the final solution is obtained. A numerical procedure is implemented using curvilinear isoparametric element representatation. Examples are given involving an oscillating sphere and a half vibrating sphere. The results are compared with the analytical solution in which good agreement has been obtained.
Journal Article

A CFD Analysis Method for Prediction of Vehicle Exterior Wind Noise

High frequency wind noise caused by turbulent flow around the front pillars of a vehicle is an important factor for customer perception of ride comfort. In order to reduce undesirable interior wind noise during vehicle development process, a calculation and visualization method for exterior wind noise with an acceptable computational cost and adequate accuracy is required. In this paper an index for prediction of the strength of exterior wind noise, referred to as Exterior Noise Power (ENP), is developed based on an assumption that the acoustic power of exterior wind noise can be approximated by the far field acoustic power radiated from vehicle surface. Using the well-known Curle’s equation, ENP can be represented as a surface integral of an acoustic intensity distribution, referred to as Exterior Noise Power Distribution (ENPD). ENPD is estimated from turbulent surface pressure fluctuation and mean convective velocity in the vicinity of the vehicle surface.
Technical Paper

A CFD/SEA Approach for Prediction of Vehicle Interior Noise due to Wind Noise

For most car manufacturers, aerodynamic noise is becoming the dominant high frequency noise source (> 500 Hz) at highway speeds. Design optimization and early detection of issues related to aeroacoustics remain mainly an experimental art implying high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the development of a reliable numerical prediction capability. The goal of this paper is to present a computational approach developed to predict the greenhouse windnoise contribution to the interior noise heard by the vehicle passengers. This method is based on coupling an unsteady Computational Fluid Dynamics (CFD) solver for the windnoise excitation to a Statistical Energy Analysis (SEA) solver for the structural acoustic behavior.
Journal Article

A Case Study on Clean Side Duct Radiated Shell Noise Prediction

Engine air induction shell noise is a structure borne noise that radiates from the surface of the air induction system. The noise is driven by pulsating engine induction air and is perceived as annoying by vehicle passengers. The problem is aggravated by the vehicle design demands for low weight components packaged in an increasingly tight under hood environment. Shell noise problems are often not discovered until production intent parts are available and tested on the vehicle. Part changes are often necessary which threatens program timing. Shell noise should be analyzed in the air induction system design phase and a good shell noise analytical process and targets must be defined. Several air induction clean side ducts are selected for this study. The ducts shell noise is assessed in terms of material strength and structural stiffness. A measurement process is developed to evaluate shell noise of the air induction components. Noise levels are measured inside of the clean side ducts.
Technical Paper

A Case Study on Road Noise Source Identification and Reduction Measures in a Compact SUV

Road noise and speech intelligibility are becoming ever more important, irrespective of the vehicle size, due to vehicle refinement as well as connectivity with mobile communication equipment. With better aerodynamic designs, development of refined powertrains, and a tectonic shift from I.C. engine to electric motors, road noise and wind noise will become more apparent to the customer and hence will become a priority for automakers to refine their vehicles. This paper describes the efforts undertaken to identify the road noise paths and develop countermeasures for a compact SUV vehicle. A hybrid test/CAE approach was followed to improve road noise performance of this vehicle. This effort involved developing tire CAE models from physical hardware and creating synthesized road-load input from data taken on roads.
Technical Paper

A Comparative Study of Different Methods Used for Acoustic Analysis in a Chemically Reactive Environment

Sound propagation within high temperature hydrocarbon combustion product was considered. Different methods for calculating sound speed within chemically reacting gas mixture were reviewed. One dimensional sound propagation was assumed. Results obtained using all these methods were presented. The results were compared and it was shown how error could be generated if inappropriate model is used for acoustic analysis in a chemically reactive gas mixture.
Technical Paper

A Comparative Study on Sound Transmission Loss and Absorption Coefficient of Acoustical Materials

Acoustical materials are widely used in automotive vehicles and other industrial applications. Two important parameters namely Sound Transmission Loss (STL) and absorption coefficient are commonly used to evaluate the acoustical performance of these materials. Other parameters, such as insertion loss, noise reduction, and loss factors are also used to judge their performance depending on the application of these materials. A systematic comparative study of STL and absorption coefficient was conducted on various porous acoustical materials. Several dozen materials including needled cotton fiber (shoddy) and foam materials with or without barrier/scrim were investigated. The results of STL and absorption coefficient are presented and compared. As expected, it was found that most of materials are either good in STL or good in absorption. However, some combinations can achieve a balance of performance in both categories.
Technical Paper

A Comparison Between Active and Passive Approaches to the Sound Quality Tuning of a High Performance Vehicle

Sports car sound quality regularly has two conflicting targets, meeting customer's expectations for interior noise and enhancing the driving experience whilst complying with exterior noise legislation. To help with this balancing act acoustics engineers have an ever growing arsenal of tools to choose from. The conventional sound character development approach would typically involve the tuning of existing vehicle systems, primarily the air-intake and exhaust system. Increased flexibility to interior noise sound character tuning has been offered by the development of sound enhancement devices. The number of sound enhancement devices now commercially available has grown significantly in recent years but the systems can be broadly split into two main categories. Passive systems such as intake sound generators that aim to boost the levels of existing noise sources and more recently the advent of electronic sound enhancement through loud speakers and inertia shakers.