Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

An Investigation of Gasoline Engine Knock Limited Performance and the Effects of Hydrogen Enhancement

2006-04-03
2006-01-0228
A set of experiments was performed to investigate the effects of relative air-fuel ratio, inlet boost pressure, and compression ratio on engine knock behavior. Selected operating conditions were also examined with simulated hydrogen rich fuel reformate added to the gasoline-air intake mixture. For each operating condition knock limited spark advance was found for a range of octane numbers (ON) for two fuel types: primary reference fuels (PRFs), and toluene reference fuels (TRFs). A smaller set of experiments was also performed with unleaded test gasolines. A combustion phasing parameter based on the timing of 50% mass fraction burned, termed “combustion retard”, was used as it correlates well to engine performance. The combustion retard required to just avoid knock increases with relative air-fuel ratio for PRFs and decreases with air-fuel ratio for TRFs.
Technical Paper

Analysis of the Flow and Combustion Processes of a Three-Valve Stratified Charge Engine with a Small Prechamber

1974-02-01
741170
The flow and combustion processes of a three-valve, stratified charge engine with small prechamber are examined for exhaust emissions. The exhaust emissions from a single-cylinder version of this engine are shown to depend on the internal flow processes as well as mixture supply stoichiometry. A theoretically-based simulation model of the engine flow and combustion processes is described. Model predictions are compared with time-resolved prechamber air-fuel ratio measurements made during intake and compression strokes. These comparisons are used to illustrate and describe the complex flow phenomena which take place in this engine. The combustion process is then examined with the aid of calculations using the simulation model. The complexity of the combustion process is illustrated by showing that, in addition to burned gas temperatures, the cylinder and prechamber burned gas air-fuel ratios change with time.
Technical Paper

Effects of Combustion Phasing, Relative Air-fuel Ratio, Compression Ratio, and Load on SI Engine Efficiency

2006-04-03
2006-01-0229
In an effort to both increase engine efficiency and generate new, consistent, and reliable data useful for the development of engine concepts, a modern single-cylinder 4-valve spark-ignition research engine was used to determine the response of indicated engine efficiency to combustion phasing, relative air-fuel ratio, compression ratio, and load. Combustion modeling was then used to help explain the observed trends, and the limitations on achieving higher efficiency. This paper analyzes the logic behind such gains in efficiency and presents correlations of the experimental data. The results are helpful for examining the potential for more efficient engine designs, where high compression ratios can be used under lean or dilute regimes, at a variety of loads.
Technical Paper

Effects of Hydrogen Enhancement on Efficiency and NOx Emissions of Lean and EGR-Diluted Mixtures in a SI Engine

2005-04-11
2005-01-0253
Dilute operation of a SI engine offers attractive performance incentives. Lowered combustion temperatures and changes in the mixture composition inhibit NOx formation and increase the effective value of the ratio of burned gas specific heats, increasing gross indicated efficiency. Additionally, reduced intake manifold throttling minimizes pumping losses, leading to higher net indicated efficiency. These benefits are offset by the reduced combustion speed of dilute fuel-air mixtures, which can lead to high cycle-to-cycle variation and unacceptable engine behavior characteristics. Hydrogen enhancement can suppress the undesirable consequences of dilute operation by accelerating the combustion process, thereby extending the dilution limit. Hydrogen would be produced on-board the vehicle with a gasoline reforming device such as the plasmatron. High dilution at higher loads would necessitate boosting to meet the appropriate engine specific power requirements.
Technical Paper

Flame Shape Determination Using an Optical-Fiber Spark Plug and a Head-Gasket Ionization Probe

1994-10-01
941987
A method for determining the flame contour based on the flame arrival time at the fiber optic (FO) spark plug and at the head gasket ionization probe (IP) locations has been developed. The experimental data were generated in a single-cylinder Ricardo Hydra spark-ignition engine. The head gasket IP, constructed from a double-sided copper-clad circuit board, detects the flame arrival time at eight equally spaced locations at the top of the cylinder liner. Three other IP's were also installed in the cylinder head to provide additional intermediate data on flame location and arrival time. The FO spark plug consists of a standard spark plug with eight symmetrically spaced optical fibers located in the ground casing of the plug. The cylinder pressure was recorded simultaneously with the eleven IP signals and the eight optical signals using a high-speed PC-based data acquisition system.
Technical Paper

Parametric Studies of Performance and NOx Emissions of the Three-Valve Stratified Charge Engine Using a Cycle Simulation

1978-02-01
780320
The trade-off between engine operating efficiency and NOx emissions in the prechamber three-valve stratified-charge engine is examined in a series of parametric studies using an improved model developed at M.I.T. (1). Engine geometric, operating, and combustion parameters are varied independently and the effects on brake-specific-fuel-consumption, exhaust temperature and brake-specific-NO observed. Parameters chosen for study are: timing of the start of combustion, overall air-fuel ratio, prechamber air-fuel ratio at the start of combustion, main-chamber combustion duration, prechamber size (prechamber volume and orifice diameter), EGR (in main and prechamber intakes), and load. The results quantify trade-off opportunities amongst these design and operating variables which are available to the engine designer.
Technical Paper

Performance and NOx Emissions Modeling of a Jet Ignition Prechamber Stratified Charge Engine

1976-02-01
760161
The development of a cycle simulation model for the jet ignition prechamber stratified charge engine is described. Given the engine geometry, load, speed, air-fuel ratios and pressures and temperatures in the two intakes, flow ratio and a suitable combustion model, the cycle simulation predicts engine indicated efficiency and NO emissions. The relative importance of the parameters required to define the combustion model are then determined, and values for ignition delay and burn angle are obtained by matching predicted and measured pressure-time curves. The variation in combustion parameters with engine operating variables is then examined. Predicted and measured NO emissions are compared, and found to be in reasonable agreement over a wide range of engine operation. The relative contribution of the prechamber NO to total exhaust NO is then examined, and in the absence of EGR, found to be the major source of NO for overall air-fuel ratios leaner than 22:1.
Technical Paper

The Prediction of Ignition Delay and Combustion Intervals for a Homogeneous Charge, Spark Ignition Engine

1978-02-01
780232
Correlations for the ignition delay and combustion energy release intervals in a homogeneous charge, spark-ignited engine are developed. After incorporation within a simplified engine cycle simulation, predicted values of these two combustion parameters are compared to experimental engine data. The correlations are based on four fundamental quantities-the turbulent integral scale, the turbulent micro-scale, the turbulent intensity, and the laminar flame speed. The major assumptions include: (1) The turbulent integral scale is proportional to the instantaneous chamber height prior to flame initiation. (2) Angular momentum is conserved in the individual turbulent eddies ahead of the flame front (i.e., a “rapid distortion” turbulence model). (3) The turbulent intensity scales with the mean piston speed. Two empirical constants scale the correlations to a given engine.
Technical Paper

Time Resolved Measurements of the Exhaust from a Jet Ignition Prechamber Stratified Charge Engine

1977-02-01
770043
In the jet-ignition prechamber stratified-charge spark-ignition engine, the fuel-air mixture at the time of combustion is non-uniform. Instantaneous exhaust mass flow rates and emission concentrations from this engine were measured and used to determine the degree to which this charge stratification persists in the products of combustion immediately downstream of the exhaust valve throughout the exhaust process. In all the cases studied no appreciable variations, during the exhaust process, were detected either in the air-fuel ratio of the exhaust gases as a function of time or in the instantaneous concentrations of CO2, O2 and NOx. The experimentally obtained instantaneous HC and CO concentrations in the exhaust, however, displayed large fluctuations and were used to study the sources of these two pollutants in this engine.
X