Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Study of Cycle-to-Cycle Variations in SI Engines Using a Modified Quasi-Dimensional Model

1996-05-01
961187
This paper describes the use of a modified quasi-dimensional spark-ignition engine simulation code to predict the extent of cycle-to-cycle variations in combustion. The modifications primarily relate to the combustion model and include the following: 1. A flame kernel model was developed and implemented to avoid choosing the initial flame size and temperature arbitrarily. 2. Instead of the usual assumption of the flame being spherical, ellipsoidal flame shapes are permitted in the model when the gas velocity in the vicinity of the spark plug during kernel development is high. Changes in flame shape influence the flame front area and the interaction of the enflamed volume with the combustion chamber walls. 3. The flame center shifts due to convection by the gas flow in the cylinder. This influences the flame front area through the interaction between the enflamed volume and the combustion chamber walls. 4. Turbulence intensity is not uniform in cylinder, and varies cycle-to-cycle.
Technical Paper

Effects of Intake Port Design and Valve Lift on In-Cylinder Flow and Burnrate

1987-11-01
872153
LDA measurements of the flow in a motored engine near TDC of compression have been obtained, along with burnrate data in a firing engine having a near-central spark plug location. Results are reported for two different intake ports and four intake valve lifts varying from 25% to 100% of full lift. Opposite trends of swirl vs valve lift were found for the two ports, and the rms velocity fluctuation was found to be relatively insensitive to changes in valve lift. Regression analysis of the burn duration data was conducted, with swirl ratio and rms as independent variables. The analysis indicated that burn duration decreases with an increase in swirl ratio and/or rms velocity fluctuation. In light of the experimental findings, a new conceptual model is proposed regarding the effect of valve lift on the dissipation of turbulent velocity via changes in the length scale.
Technical Paper

Experimental and Theoretical Analysis of Wankel Engine Performance

1978-02-01
780416
A model for predicting the performance and emissions characteristics of Wankel engines has been developed and tested. Each chamber is treated as an open thermodynamic system and the effects of turbulent flame propagation, quench layer formation, gas motion, heat transfer and seal leakage are included. The experimental tests were carried out on a Toyo Kogyo 12B engine under both motoring and firing conditions and values for the effective seal leakage area and turbulent heat transfer coefficient were deduced. The agreement between the predicted and measured performances was reasonable. Parametric studies of the effects of reductions in seal leakage and heat transfer were carried out and the results are presented.
Technical Paper

Modeling the Effect of Swirl on Turbulence Intensity and Burn Rate in S.I. Engines and Comparison with Experiment

1986-02-01
860325
An Engine Simulation Model was used to study the effect of in-cylinder swirl level on turbulence intensity and burn rate while holding the inducted kinetic energy constant. Experimental measurements of burn rate for three different swirl levels were obtained and compared with model predictions. The turbulence model used previously did not include wall shear effects and showed little enhancement of turbulence due to swirl, causing small changes in predicted burn rate when the swirl level was changed. An improved turbulence model is proposed which includes production of turbulence due to wall shear effects. Turbulence intensity predictions from the improved model resulted in excellent agreement between the measured and predicted burn rates as swirl level was changed. In addition, the model was used to predict the effect of swirl levels on ISFC. Results showed that ISFC changes were overall small for the range of swirl levels considered.
Technical Paper

Predictions of In-Cylinder Swirl Velocity and Turbulence Intensity for an Open Chamber Cup in Piston Engine

1981-02-01
810224
A flow model is presented that predicts the swirl and turbulent velocities in an open chamber, cup-in-piston I.C. engine. The swirl model is based on an integral formulation of the angular momentum equation solved with an assumed tangential velocity profile form, Vθ(r). This enables the swirl model to predict a non-solid body rotation which is a function of the inlet flow, wall shear and squish motion during the engine cycle. The mean flow model is coupled with a global K-ε model which together predict shear stresses, mixing rates and heat transfer coefficients. An integrated form of the K-ε turbulence model is used which includes the compressibility, shear and boundary layer effects. Turbulence generated by the inlet flow is included and assumed to be proportional to the velocity past the intake valve. Also, the production of turbulence due to the boundary layer effects are included.
X