Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Aggregate Emissions from the Automobile Population

1974-02-01
740536
A methodology is presented with which aggregate emissions from the in-use automobile population can be calculated for any given calendar year. The data base needed for such a calculation is discussed, and areas in which further research is needed are pointed out. Results of a series of calculations are then presented showing the effect on aggregate emissions of various control strategies. The effects of an inspection/maintenance and retrofit program, different vehicle population growth rates, catalyst deterioration in use, and various schedules of new car emission standards for post-1975 vehicles are presented. It is shown that the rate at which old, higher-polluting vehicles are retired from the in-use vehicle population is the major factor in determining the rate at which aggregate emissions will decrease in the 1970s, with the precise level of post-1975 standards only becoming important in the 1980s.
Technical Paper

Effects of Piston-Ring Dynamics on Ring/Groove Wear and Oil Consumption in a Diesel Engine

1997-02-24
970835
The wear patterns of the rings and grooves of a diesel engine were analyzed by using a ring dynamics/gas flow model and a ring-pack oil film thickness model. The analysis focused primarily on the contact pressure distribution on the ring sides and grooves as well as on the contact location on the ring running surfaces. Analysis was performed for both new and worn ring/groove profiles. Calculated results are consistent with the measured wear patterns. The effects of groove tilt and static twist on the development of wear patterns on the ring sides, grooves, and ring running surfaces were studied. Ring flutter was observed from the calculation and its effect on oil transport was discussed. Up-scraping of the top ring was studied by considering ring dynamic twist and piston tilt. This work shows that the models used have potential for providing practical guidance to optimizing the ring pack and ring grooves to control wear and reduce oil consumption.
Technical Paper

Modeling the Dynamics and Lubrication of Three Piece Oil Control Rings in Internal Combustion Engines

1998-10-19
982657
The oil control ring is the most critical component for oil consumption and friction from the piston system in internal combustion engines. Three-piece oil control rings are widely used in Spark Ignition (SI) engines. However, the dynamics and lubrication of three piece oil control rings have not been thoroughly studied from the theoretical point of view. In this work, a model was developed to predict side sealing, bore sealing, friction, and asperity contact between rails and groove as well as between rails and the liner in a Three Piece Oil Control Ring (TPOCR). The model couples the axial and twist dynamics of the two rails of TPOCR and the lubrication between two rails and the cylinder bore. Detailed rail/groove and rail/liner interactions were considered. The pressure distribution from oil squeezing and asperity contact between the flanks of the rails and the groove were both considered for rail/groove interaction.
X