Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Analysis of Energy-Efficient Management of a Light-Duty Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

The paper presents the main results of a study on the simulation of energy efficient management of on-board electric and thermal systems for a medium-size passenger vehicle featuring a parallel-hybrid diesel powertrain with a high-voltage belt alternator starter. A set of advanced technologies has been considered on the basis of very aggressive fuel economy targets: base-engine downsizing and friction reduction, combustion optimization, active thermal management, enhanced aftertreatment and downspeeding. Mild-hybridization has also been added with the goal of supporting the downsized/downspeeded engine performance, performing energy recuperation during coasting phases and enabling smooth stop/start and acceleration. The simulation has implemented a dynamic response to the required velocity and manual gear shift profiles in order to reproduce real-driver behavior and has actuated an automatic power split between the Internal Combustion Engine (ICE) and the Electric Machine (EM).
Journal Article

Analysis of Various Operating Strategies for a Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

The sustainable use of energy and the reduction of pollutant emissions are main concerns of the automotive industry. In this context, Hybrid Electric Vehicles (HEVs) offer significant improvements in the efficiency of the propulsion system and allow advanced strategies to reduce pollutant and noise emissions. The paper presents the results of a simulation study that addresses the minimization of fuel consumption, NOx emissions and combustion noise of a medium-size passenger car. Such a vehicle has a parallel-hybrid diesel powertrain with a high-voltage belt alternator starter. The simulation reproduces real-driver behavior through a dynamic modeling approach and actuates an automatic power split between the Internal Combustion Engine (ICE) and the Electric Machine (EM). Typical characteristics of parallel hybrid technologies, such as Stop&Start, regenerative braking and electric power assistance, are implemented via an operating strategy that is based on the reduction of total losses.
Journal Article

Assessment of a New Quasi-Dimensional Multizone Combustion Model for the Spray and Soot Formation Analysis in an Optical Single Cylinder Diesel Engine

An innovative quasi-dimensional multizone combustion model for the spray formation, combustion and emission formation analysis in DI diesel engines was assessed and applied to an optical single cylinder engine. The model, which has been recently presented by the authors, integrates a predictive non stationary 1D spray model developed by the Sandia National Laboratory, with a diagnostic multizone thermodynamic model. The 1D spray model is capable of predicting the equivalence ratio of the fuel during the mixing process, as well as the spray penetration. The multizone approach is based on the application of the mass and energy conservation laws to several homogeneous zones identified in the combustion chamber. A specific submodel is also implemented to simulate the dilution of the burned gases. Soot formation is modeled by an expression which derives from Kitamura et al.'s results, in which an explicit dependence on the local equivalence ratio is considered.
Journal Article

Multi-Dimensional Modeling of Direct Natural-Gas Injection and Mixture Formation in a Stratified-Charge SI Engine with Centrally Mounted Injector

Direct injection (DI) of natural gas (NG) at high pressure conditions has emerged as a high-potential strategy for improving SI engine performance. Besides, DI allows an increase in the fuel economy, due to the possibility of a significant engine dethrottling at partial load. The high-pressure gas injection can also increase the turbulence level of mixture and thus the overall fuel-air mixing. Since direct NG injection is an emerging technology, there is a lack of experience on the optimum configuration of the injection system and the associated combustion chamber design. In the last few years, some numerical investigations of gas injection have been made, mainly oriented at the development of reliable numerical investigation tools. The present paper is concerned with the development and application of a numerical Star-CD based model for the investigation of the direct NG injection process from a poppet-valve injector into a bowl-piston engine combustion chamber.
Technical Paper

Numerical and Experimental Analysis of Mixture Formation and Performance in a Direct Injection CNG Engine

This paper presents the results of part of the research activity carried out by the Politecnico di Torino and AVL List GmbH as part of the European Community InGAS Collaborative Project. The work was aimed at developing a combustion system for a mono-fuel turbocharged CNG engine, with specific focus on performance, fuel economy and emissions. A numerical and experimental analysis of the jet development and mixture formation in an optically accessible, single cylinder engine is presented in the paper. The experimental investigations were performed at the AVL laboratories by means of the planar laser-induced fluorescence technique, and revealed a cycle-to-cycle jet shape variability that depended, amongst others, on the injector characteristics and in-cylinder backpressure. Moreover, the mixing mechanism had to be optimized over a wide range of operating conditions, under both stratified lean and homogeneous stoichiometric modes.
Technical Paper

Optimization of the Layout and Control Strategy for Parallel Through-the-Road Hybrid Electric Vehicles

This paper describes the optimization of the layout and of the control strategy of through-the-road (TTR) parallel hybrid electric vehicles equipped with two compression-ignition engines that feature different values of maximum output power. First, a tool has been developed to define the optimal layout of each TTR vehicle. This is based on the minimization of the powertrain and fuel cost over a 10-year time span, taking into account the fuel consumption. Several performance requirements are guaranteed during the optimization, namely maximum vehicle velocity, 0-100 km/h acceleration time, gradeability and the all-electric range. A benchmark optimizer that is based on the dynamic programming theory has been developed to identify the optimal working mode and the gear number, which are the control variables of the problem. A mathematical technique, based on the pre-processing of a configuration matrix, has been developed in order to speed up the calculation time.
Journal Article

Spray and Soot Formation Analysis by Means of a Quasi-Dimensional Multizone Model in a Single Cylinder Diesel Engine under Euro 4 Operating Conditions

An investigation has been carried out on the spray penetration and soot formation processes in a research diesel engine by means of a quasi-dimensional multizone combustion model. The model integrates a predictive non stationary 1D spray model developed by the Sandia National Laboratory, with a diagnostic multizone thermodynamic model, and is capable of predicting the spray formation, combustion and soot formation processes in the combustion chamber. The multizone model was used to analyze three operating conditions, i.e., a zero load point (BMEP = 0 bar at 1000 rpm), a medium load point (BMEP = 5 bar at 2000 rpm) and a medium-high load point (BMEP = 10 bar at 2000 rpm). These conditions were experimentally tested in an optical single cylinder engine with the combustion system configuration of a 2.0L Euro4 GM diesel engine for passenger car applications.