Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Knock Modeling: an Integrated Tool for Detailed Chemistry and Engine Cycle Simulation

For the simultaneous evaluation of the influence on engine knock of both chemical conditions and global operating parameters, a combined tool was developed. Thus, a two-zone kinetic model for SI engine combustion calculation (Ignition) was implemented into an engine cycle simulation commercial code. The combined model predictions are compared with experimental data from a single-cylinder test engine. This shows that the model can accurately predict the knock onset and in-cylinder pressure and temperature for different lambda conditions, with and without EGR. The influence of nitric oxide amount from residual gas in relation with knock is further investigated. The created numerical tool represents a useful support for experimental measurements, reducing the number of tests required to assess the proper engine control strategies.
Technical Paper

Prediction Tool for the Ion Current in SI Combustion

In this work, constant volume combustion is studied using a zero-dimensional FORTRAN code, which is a wide-ranging chemical kinetic simulation that allows a closed system of gases to be described on the basis of a set of initial conditions. The model provides an engine- or reactor-like environment in which the engine simulations allow for a variable system volume and heat transfer both to and from the system. The combustion chamber is divided into two zones as burned and unburned ones, which are separated by an assumed thin flame front in the combustion model used for this work. Equilibrium assumptions have been adopted for the modeling of the thermal ionization, where Saha's equation was derived for singly ionized molecules. The investigation is focused on the thermal ionization of NO as well as for other species. The outputs generated by the model are temperature profiles, species concentration profiles, ionization degree and an electron density for each zone.
Technical Paper

Simulation of Soot Formation Under Diesel Engine Conditions Using a Detailed Kinetic Soot Model

Numerical simulations of diesel engine combustion and emission formation have been performed using a detailed soot model. Operating conditions typical for modern truck-size engines have been investigated, and calculated results show encouraging agreement with experimental data for soot in engine exhaust gas. Predictions of details in the soot formation process compare well with detailed experimental data from the literature. The modelling of the soot/flow-field interaction is based on a flamelet approach. Source terms of the soot volume fraction are taken from a flamelet library using a presumed probability density function and integrating over mixture fraction space. In order to save computer storage and CPU time, the flamelet library of sources was constructed using a multi-parameter fitting procedure resulting in simple algebraic equations and a proper set of parameters.
Technical Paper

Soot Particle Size Distribution~A Joint Work for Kinetic Modelling and Experimental Investigations

The intention of the presented work was to develop a new simulation tool that fits into a CFD (computational fluid dynamics) workflow and provides information about the soot particle size distribution. Additionally it was necessary to improve and use state-of-the-art measurement techniques in order to be able to gain more knowledge about the behavior of the soot particles and to validate the achieved simulation results. The work has been done as a joint research financed by the European Community under FP5.
Technical Paper

Stochastic Model for the Investigation of the Influence of Turbulent Mixing on Engine Knock

A stochastic model based on a probability density function (PDF) was developed for the investigation of different conditions that determine knock in spark ignition (SI) engine, with focus on the turbulent mixing. The model used is based on a two-zone approach, where the burned and unburned gases are described as stochastic reactors. By using a stochastic ensemble to represent the PDF of the scalar variables associated with the burned and the unburned gases it is possible to investigate phenomena that are neglected by the regular existing models (as gas non-uniformity, turbulence mixing, or the variable gas-wall interaction). Two mixing models are implemented for describing the turbulent mixing: the deterministic interaction by exchange with the mean (IEM) model and the stochastic coalescence/ dispersal (C/D) model. Also, a stochastic jump process is employed for modeling the irregularities in the heat transfer.