Refine Your Search

Search Results

Viewing 1 to 20 of 20
Technical Paper

A Computer Model of a Pulsejet Engine

1982-02-01
820953
This paper deals with the performance prediction of one member of a family of thrust producing intermittent combustion engines, namely the pulsejet. The first part is concerned with formulating basic concepts of how pulsejets work. It describes the different methods of providing intake valving action and derives theory to demonstrate the operation of the aerodynamic tuned valve in particular. The second part is concerned with devising a computer program to simulate and predict the performance of valveless pulsejets. The program is based on the method of characteristics for calculating unsteady gas flow. Theories and techniques are given to handle the major problems associated with this application. These problems include the large range of discontinuous temperature and entropy, flow through an area discontinuity and the calculation of mean thrust.
Technical Paper

An Improved Model for Predicting Reed Valve Behaviour in Two-Stroke Cycle Engines

1987-09-01
871654
Previous publications from The Queen's University of Belfast have shown the formulation of a mathematical model to simulate the dynamic behaviour of a reed valve as used between the crankcase and inlet tract of a simple two-stroke cycle engine. This paper describes the enhancements and improvements made to this original reed valve model and its verification by correlation with measurements from a firing engine. Measured and predicted data for reed tip lift and delivery ratio are presented for a 350cm3, twin cylinder test engine over a wide range of engine speeds up to 9500 rev/min. The results of this experimental and theoretical study, using varied reed width profiles and radically different reed petal materials including carbon fibre, glass fibre reinforced plastics and steel, are also presented. The development of a new and unique reed valve visualisation technique is described and discussed both theoretically and practically.
Technical Paper

Coefficients of Discharge at the Aperatures of Engines

1995-09-01
952138
This paper reports on the experimental evaluation of certain aspects concerning the mathematical modelling of pressure wave propagation in engine ducting. A particular aspect is the coefficient of discharge of the various ports, valves or apertures of the ducting connected to the cylinder of an engine or to the atmosphere. The traditional method for the deduction of the coefficients of discharge employs steady flow experimentation. While the traditional experimental method may well be totally adequate, it is postulated in this paper that the traditional theoretical approach to the deduction of the discharge coefficient from the measured data leads to serious inaccuracies if incorporated within an engine simulation by computer. An accurate theoretical method for the calculation of the discharge coefficient from measured data is proposed.
Technical Paper

Computational Fluid Dynamics Applied to Two-Stroke Engine Scavenging

1985-09-01
851519
A three dimensional computational fluid dynamics program is used to simulate theoretically the scavenging process in the loop-scavenged two-stroke cycle engine. The theoretical calculation uses the k - ε turbulence model and all calculations are confined to the in-cylinder region. The calculation geometry is oriented towards five actual engine cylinders which have been tested under firing conditions for the normal performance characteristics of power, torque, and specific fuel consumption. The same five engine cylinders have also been experimentally tested on a single-cycle gas testing rig for their scavenging efficiency - scavenge ratio characteristics. The ranking of the cylinders in order of merit in terms of scavenging efficiency by both the rig and the theoretical calculations is shown to be in good agreement with the evidence provided by the actual firing engine test results.
Technical Paper

Computer Simulation of the Performance of a 1.9 Litre Direct Injection Diesel Engine

2002-03-04
2002-01-0070
Recent environmental legislation to reduce emissions and improve efficiency means that there is a real need for improved thermodynamic performance models for the simulation of direct-injection, turbocharged diesel engines, which are becoming increasingly popular in the automotive sector. An accurate engine performance simulation software package (VIRTUAL 4-STROKE) is employed to model a benchmark automotive 1.9-litre Turbocharged Direct Injection (TDI) diesel engine. The accuracy of this model is scrutinised against actual test results from the engine. This validation includes comparisons of engine performance characteristics and also instantaneous gas dynamic and thermodynamic behaviour in the engine cylinders, turbocharger and ducting. It is seen that there is excellent agreement in all of these areas.
Technical Paper

Correlation of Simulated and Measured Noise Emission Using a Combined 1D/3D Computational Technique

1997-02-24
970801
A combined one-dimensional, multi-dimensional computational fluid dynamic modelling technique has been developed for analysis of unsteady gas dynamic flow through automotive mufflers. The technique facilitates assessment of complex designs in terms of back-pressure and noise attenuation. The methodology has been validated on a number of common exhaust muffler arrangements over a wide range of test conditions. Comparison between measured and simulated data has been conducted on a Single-Pulse (SP) rig for detailed unsteady gas dynamic analysis and a Rotary-Valve (RV) rig in conjunction with an anechoic chamber for noise attenuation analysis. Results obtained on both experimental arrangements exhibit excellent gas dynamic and acoustic correlation. The technique should allow optimisation of a wide variety of potential muffler designs prior to prototype manufacture.
Technical Paper

Correlation of Simulated and Measured Noise Emissions and Unsteady Gas Dynamic Flow from Engine Ducting

1996-08-01
961806
One-dimensional (1-D) unsteady gas dynamic models of a number of common muffler (or silencer) elements have been incorporated into a1-D simulation code to predict the impact of the muffler on the gas dynamics within the overall system and the radiated Sound Pressure Level (SPL) noise spectrum in free-space. Correlation with measured data has been achieved using a Single-Pulse rig for detailed unsteady gas dynamic analysis and a Rotary-Valve rig in conjunction with an anechoic chamber for noise spectra analysis. The results obtained show good agreement both gas dynamically and acoustically. The incorporation of these models into a full 1-D engine simulation code should facilitate the rapid assessment of various muffler designs prior to prototype manufacture and testing.
Technical Paper

Design of Exhaust Systems for V-Twin Motorcycle Engines to Meet Silencing and Performance Criteria

1994-12-01
942514
This paper reports on the use of mathematical modelling by the GPB method of pressure wave propagation through finite systems, for the design of prototype exhaust systems and silencers for a Harley-Davidson motorcycle. The motorcycle engine is the classic 1340 cm3 45° V-twin power unit. The design objectives were to gain mid-range power and torque without loss of performance at either end of the speed range and to design silencers which would enhance the performance and the noise image of the machine. The Queen's University of Belfast (QUB) (3)* employed their unsteady gas flow modelling techniques to the design of the system and its silencers to complement a new camshaft design from Crane Cams. The results of the use of these computer based design techniques are reported as performance characteristics of power and torque for the new design by comparison with the stock system.
Technical Paper

Experimental Evaluation of 1-D Computer Codes for the Simulation of Unsteady Gas Flow Through Engines - A First Phase

1994-09-01
941685
This paper reports on the first phase of an experimental evaluation of five different methods for the mathematical modelling of unsteady gas flow in engine ducting. The five methods under investigation are the homentropic method of characteristics, the non-homentropic method of characteristics, the two-step Lax-Wendroff method with flux corrected transport, the Harten-Lax-Leer upstream difference method and the Blair method of pressure wave propagation through finite spaces. A single cycle pressure wave generator consisting of a cylinder, connected via a sliding valve to a long duct, has been designed and built. The pressure waves it creates closely mimic those to be found in i.e. engines. The cylinder and the ducts of the device can be filled with any gas and at elevated temperatures. A perfect seal exists between the cylinder and the valve thus enabling mass- flow correlation. The initial cylinder pressure may be set to simulate an induction or an exhaust process.
Technical Paper

Experimental Validation of 1-D Modelling Codes for a Pipe System Containing Area Discontinuities

1995-02-01
950276
This paper reports on the first phase of an experimental evaluation of four different methods for the mathematical modelling of unsteady gas flow in a pipe system containing an area discontinuity. The four methods under investigation are the non-homentropic method of characteristics, the two-step Lax-Wendroff method with flux corrected transport, the Harten-Lax-Leer upstream difference method and the GPB finite system method. The experimentation is conducted using the QUB SP (single-pulse) pressure wave generator consisting of a cylinder, connected via a sliding valve to a long duct. The pressure waves it creates closely mimic those to be found in i.c. engines. The initial cylinder pressure may be set to simulate either an induction or an exhaust process. Various ducts are attached to the pressure wave generator to simulate both sudden and gradual area changes. Each duct is sufficiently long as to permit pressure wave observation without superposition effects.
Technical Paper

Experimental Validation of a 1D Modelling Code for a Pipe Containing Gas of Varying Properties

1995-02-01
950275
This paper reports on the experimental evaluation of certain aspects of the mathematical modelling by the GPB method of pressure wave propagation through finite systems, of unsteady gas flow in engine ducting. The aspects under examination are the propagation of pressure waves through a pipe which contains gases of dissimilar properties. In this case the gases are carbon dioxide and air. The experimentation is conducted using the QUB SP (single pulse) pressure wave generator consisting of a cylinder, connected via a sliding valve to a long duct. The pressure waves it creates closely mimic those to be found in i.e. engines. The initial cylinder pressure may be set to simulate either an induction or an exhaust process, but the experiments reported here are of compression waves only. The duct attached to the pressure wave generator is a straight pipe. The cylinder and part of the pipe are filled with carbon dioxide and air.
Technical Paper

Motored and Steady Flow Boundary Conditions Applied to the Prediction of Scavenging Flow in a Loop Scavenged Two-Stroke Cycle Engine

1990-02-01
900800
The application of in-cylinder multi-dimensional modelling to the scavenging process within the cylinder of a two-stroke cycle engine requires a prior knowledge of the flow entering that cylinder. Without this information, assumptions must be made which limit the accuracy of the theoretical simulation. This paper describes laser doppler anemometry measurements of transfer port efflux flow for a two-port loop scavenged test cylinder motored at 200 rev/min. The cylinder was externally blown to ensure scavenge flow into the cylinder over the entire transfer port open period. The test results indicate that the flow does not enter the cylinder in the port design direction, but varies as a function of port height during both port opening and closing. Comparison of motoring results with those obtained under steady flow testing of the same cylinder, shows adequate correlation, thereby justifying the use of steady flow information for dynamic simulation.
Technical Paper

Observations on the Design and Operation of Pulsejet Engines as Derived from an Experimental and Theoretical Investigation

1984-02-01
840422
This paper describes some of the experimental and theoretical work carried out at the Queen's University, Belfast in connection with a pulsejet project. It starts from the earliest stages of trying to achieve a working reed valved engine and continues to the present where valve less pulsejets have been designed with the aid of a simulation program. Suggestions are made regarding the manner in which various parameters such as duct and intake geometry, orientation and flight speed can affect performance. It suggests four main criteria which must be fulfilled for any valveless pulsejet to operate successfully and discusses methods by which these can be achieved.
Technical Paper

Predicting the Performance Characteristics of Two-Cycle Engines Fitted with Reed Induction Valves

1979-02-01
790842
Earlier papers by the principal author in conjunction with others have described the prediction of noise and performance characteristics of two-cycle spark-ignition crankcase compression engines. These calculations are performed on a digital computer and are shown to simulate accurately the unsteady gas flow and thermodynamic processes in such power units. The engines described previously had induction control by the piston or with a disc valve. In this paper the work is extended to engines fitted with reed valves controlling intake air flow and examples illustrating the effectiveness of such calculations are presented. In particular, a single-cylinder industrial engine is employed to show clearly the effects of changing such parameters as reed petal thickness, stop-plate radii and numbers of reed petals on the performance characteristics.
Technical Paper

REDUCING EXHAUST EMISSIONS AND INCREASING POWER OUTPUT USING A TUNED EXHAUST PIPE ON A TWO-STROKE ENGINE

2001-12-01
2001-01-1853
At the 1999 SETC meeting, a paper presented a simple, tuned and silenced exhaust system for a two-stroke engine which theoretically reduced both noise and exhaust emissions and increased engine power and fuel efficiency. In this paper that design concept is applied to a small 56 cc industrial engine and experimentally shown to deliver the projected behaviour which was predicted in that earlier publication. Experimental test results are presented for power output, fuel consumption, and exhaust emissions to illustrate these statements. An accurate engine simulation software package (VIRTUAL 2-STROKE) is employed to model the entire two-stroke engine and to demonstrate not only its effectiveness as a design tool in this area but also that it can accurately predict the above-mentioned performance and emission characteristics.
Technical Paper

Reducing Exhaust Hydrocarbon Emissions from a Small Low Cost Two-Stroke Engine

1998-09-14
982013
An experimental and theoretical investigation to minimise the hydrocarbon emissions from a 25 cm3 two-stroke engine with finger transfer ports is described. Finger ports have the side of each passage closest to the cylinder axis open to the cylinder bore making it possible to produce high-pressure die castings with the simplest of dies. Cylinders utilising this type of porting are believed to have inferior scavenging characteristics compared to those using closed or cup-handle porting. The effects of cylinder scavenging characteristics and port optimisation on engine performance were examined using a computer simulation. It is concluded that there is potential for a 70% reduction in exhaust hydrocarbon emissions through scavenging efficiency improvements and port optimisation, provided the cylinder scavenging can be developed to match that of the best existing unconventional crossflow scavenged designs.
Technical Paper

Simulation of a 1.9 Litre Direct Injection Turbocharged Diesel Engine at Part Load

2003-03-03
2003-01-1065
Engine cycle simulation is an essential tool in the development of modern internal combustion engines. As engines evolve to meet tougher environmental and consumer demands, so must the analysis tools that the engineer employs. This paper reviews the application of such a tool, VIRTUAL 4-STROKE [1], in the modelling of a benchmark 1.9 Litre TDI engine. In an earlier paper presented to the Society [2] the authors presented results of a validation study on the same engine under full load operation. This paper expands on that work with validation of the simulation model against measured data over a full range of part load operation.
Technical Paper

Single Cycle Gas Testing Method for Two-Stroke Engine Scavenging

1985-02-01
850178
This paper presents a single-cycle gas simulation of the scavenging process in a two-stroke cycle engine. The apparatus used is described in the most detailed fashion and the experimental procedure is covered completely. On the apparatus is placed some eleven differing cylinders of a Yamaha 250 motorcycle engine and the scavenging efficiency - scavenge ratio characteristics of each determined experimentally. The results of these experiments are compared with the known performance characteristics of the same eleven cylinders which were obtained under firing conditions for variations of power, torque, air-flow, fuel consumption and scavenging efficiency at several speeds and throttle positions. The correlation, between the ranking of the several cylinders determined on the scavenging simulation apparatus with the performance characteristics obtained under firing conditions, is very good.
Technical Paper

The Unsteady Gas Flow Behaviour in a Charge Cooled Rotary Piston Engine

1977-02-01
770763
Mathematical models of the open cycle gas exchange process and the closed cycle combustion process are developed for a Wankel engine. The theoretical model of the complete engine operating cycle is programmed for a digital computer and the results are shown for a small single rotor charge cooled Wankel engine. The predicted pressure diagrams in the working chamber and in the inlet, transfer and exhaust ducts are compared with measured values as is the predicted volumetric efficiency relationship with engine speed. The predicted charging efficiency relationship with engine speed is also compared with the measured brake mean effective pressure characteristic to demonstrate the usefulness of the theoretical model.
Technical Paper

Unsteady Gas Flow Through Reed Valve Induction Systems

1978-02-01
780766
Previous publications from The Queen's University of Belfast have described the unsteady gas flow through a naturally aspirated two-cycle engine and the most recent of these have detailed the scavenge process, the combustion model and muffler design. It is thus now possible to predict the unsteady gas flow behaviour through and the performance and noise characteristics in this type of engine with a good degree of accuracy. This paper describes a mathematical model which has been formulated to simulate the action of the two-cycle engine fitted with a reed valve due to the unsteady gas dynamic behaviour in the inlet tract and makes comparisons with measurements. A complete simulation on the computer of a two-cycle engine fitted with a reed intake valve is thus now possible.
X