Refine Your Search




Search Results


0-D and 1-D Modeling and Numerics, 2017

Papers in the session cover zero-dimensional, one-dimensional, and quasi-dimensional models for simulation of SI and CI engines with respect to: engine breathing, boosting, and acoustics; SI combustion and emissions; CI combustion and emissions; fundamentals of engine thermodynamics; numerical modeling of gas dynamics; thermal management; mechanical and lubrication systems; system level models for controls; and system level models for vehicle fuel economy and emissions predictions.

0-D and 1-D Modeling and Numerics, 2018

Papers in the session cover zero-dimensional, one-dimensional, and quasi-dimensional models for simulation of SI and CI engines with respect to: engine breathing, boosting, and acoustics; SI combustion and emissions; CI combustion and emissions; fundamentals of engine thermodynamics; numerical modeling of gas dynamics; thermal management; mechanical and lubrication systems; system level models for controls; and system level models for vehicle fuel economy and emissions predictions.
Journal Article

2-D CFAR Procedure of Multiple Target Detection for Automotive Radar

Abstract In Advanced Driver Assistant System (ADAS), the automotive radar is used to detect targets or obstacles around the vehicle. The procedure of Constant False Alarm Rate (CFAR) plays an important role in adaptive targets detection in noise or clutter environment. But in practical applications, the noise or clutter power is absolutely unknown and varies over the change of range, time and angle. The well-known cell averaging (CA) CFAR detector has a good detection performance in homogeneous environment but suffers from masking effect in multi-target environment. The ordered statistic (OS) CFAR is more robust in multi-target environment but needs a high computation power. Therefore, in this paper, a new two-dimension CFAR procedure based on a combination of Generalized Order Statistic (GOS) and CA CFAR named GOS-CA CFAR is proposed. Besides, the Linear Frequency Modulation Continuous Wave (LFMCW) radar simulation system is built to produce a series of rapid chirp signals.
Journal Article

26,500km Down the Pan-American Highway in an Electric Vehicle A Battery's Perspective

This paper presents a novel battery degradation model based on empirical data from the Racing Green Endurance project. Using the rainflow-counting algorithm, battery charge and discharge data from an electric vehicle has been studied in order to establish more reliable and more accurate predictions for capacity and power fade of automotive traction batteries than those currently available. It is shown that for the particular lithium-iron phosphate (LiFePO₄) batteries, capacity fade is 5.8% after 87 cycles. After 3,000 cycles it is estimated to be 32%. Both capacity and power fade strongly depend on cumulative energy throughput, maximum C-rate as well as temperature.
Technical Paper

2D Finite Element Simulation of Sheet Metal Forming Processes

A 2D finite element program, known as FAST_FORM2D, was developed at FTI to carry out section analysis in die design. Incremental method is employed and plane strain condition is assumed for 2D sections. Contact behavior and friction force are simulated by a developed algorithm. Therefore, the divergence problems related to the conventional contact techniques can be reduced or avoided. An adaptive mesh generation scheme is implemented to achieve computation efficiency. With the code, it is possible to evaluate tension, strain, thickness distributions and punch force at different stages for any 2D section cut from 3D panels. User can easily input or modify forming conditions to get the best solution.
Technical Paper

3-D Machine-Vision Technique for Rapid 3D Shape Measurement and Surface Quality Inspection

A novel computer vision technique for rapid measurement of surface coordinates is presented. The technique is based on the marriage of a digital fringe projection technique and a fringe-phase extraction algorithm. A digitally controlled video signal in the form of linear and parallel fringes of cosinusoidal intensity variation is projected onto an object. The fringe pattern is perturbed by the three-dimensional object surface with fringe-phase containing information on the depth of the object. A phase extraction algorithm is used to determine the fringe-phase distribution, from which the three-dimensional surface coordinates are determined. The theoretical basis of this technique and some experimental results are presented in this paper.
Technical Paper

3-D Shell Topology Optimization Using a Design Domain Method

3-D shell components are used intensively in the automotive industry. Many structural topology optimization techniques were developed to reduced the total weight of shell structures while retaining its structural performance. One common approach is to utilize the concept of the design domain, such as the homogenization method and the density function approach. In this paper, a new micro-structure based design domain method is introduced to solve 3-D shell topology optimization problems. Based on physical micro-structure model, simple closed-form expressions for effective Young's modulus and effective shear modulus are rigorously derived. Using these simple relations, topology optimization problems can be formulated and solved with sequential convex approximation algorithms. Two design examples obtained from the new method are presented.
Journal Article

360° Surround View System with Parking Guidance

In this paper, we present a real-time 360 degree surround system with parking aid feature, which is a very convenient parking and blind spot aid system. In the proposed system, there are four fisheye cameras mounted around a vehicle to cover the whole surrounding area. After correcting the distortion of four fisheye images and registering all images on a planar surface, a flexible stitching method was developed to smooth the seam of adjacent images away to generate a high-quality result. In the post-process step, a unique brightness balance algorithm was proposed to compensate the exposure difference as the images are not captured with the same exposure condition. In addition, a unique parking guidance feature is applied on the surround view scene by utilizing steering wheel angle information as well as vehicle speed information.
Technical Paper

3D Large Scale Simulation of the High-Speed Liquid Jet Atomization

In this paper three-dimensional Large Eddy Simulations (i.e., LES) by using a PLIC-VOF method have been adopted to investigate the atomization process of round liquid jets issuing from automotive multi-hole injector-like nozzles. LES method is used to compute directly the effect of the large flow structure, being the smallest one modelled. A mesh having a cell size of 4 μm was used in order to derive a statistics of the detached liquid structures, i.e. droplets and ligaments. The latter have been identified by using an algorithm coded by authors. Cavitation modeling has not been included in the present computations. Two different mean injection nozzle flow velocities of 50 m/s and 270 m/s, corresponding to two mean nozzle flow Reynolds numbers of 1600 and 8700, respectively, have been considered in the calculations as representative of laminar and turbulent nozzle flow conditions.
Technical Paper

50 KVA High Temperature Bi-directional Converter for On-Engine Application in More Electric Aircraft

The transition towards More Electric Aircraft (MEA) architectures has challenges relating to integration of power electronics with the starter generator system for on-engine application. To efficiently operate the power electronics in the hostile engine environment at high switching frequency and for better thermal management, use of silicon carbide (SiC) power devices for a bi-directional power converter is examined. In this paper, development of a 50 kVA bi-directional converter operating at an ambient temperature of about 2000C is presented. The design and operation of the converter with details of control algorithm implementation and cooling chamber design are also discussed.
Technical Paper

5th Percentile Driver Out of Position Computer Simulation

A finite element model of a folded airbag with the module cover and steering wheel system was developed to estimate the injury numbers of a 5th percentile female dummy in an out-of-position (OOP) situation. The airbag model was correlated with static airbag deployments and standard force plate tests. The 5th percentile finite element dummy model developed by First Technology Safety Systems (FTSS) was used in the simulation. The following two OOP tests were simulated with the airbag model including a validated steering wheel finite element model: 1. Chest on air bag module for maximum chest interaction from pressure loading (MS6-D) and 2. Neck on air bag module for maximum neck interaction from membrane loading (MS8-D). These two simulations were then compared to the test results. Satisfactory correlation was found in both the cases.
Technical Paper

747 Shuttle Carrier Aircraft/Space Shuttle Orbiter Mated Ground Vibration Test: Data via Transient Excitation and Fast Fourier Transform Analysis

The experimental procedure employed to define the natural modes of vibration of the 747 Shuttle Carrier Aircraft and Space Shuttle Orbiter mated configuration is described. A discussion of test results and comparison to structural analysis results is also included. Random transient signals were used as inputs to electromagnetic shakers to provide excitation to the mated vehicle test configuration. Acceleration signals were processed via the Fast Fourier Transform algorithm. Magnitude and phase transfer functions were formed and processed to produce modal frequencies, damping, and modal displacements.
Technical Paper

A 1D Unsteady Thermo-Fluid Dynamic Approach for the Simulation of the Hydrodynamics of Diesel Particulate Filters

A new approach for the fluid-dynamic simulation of the Diesel Particulate Filters (DPF) has been developed. A mathematical model has been formulated as a system of nonlinear partial differential equations describing the conservation of mass, momentum and energy for unsteady, compressible and reacting flows, in order to predict the hydrodynamic characteristics of the DPF and to study the soot deposition mechanism. In particular, the mass conservation equations have been solved for each chemical component considered, and the advection of information concerning the chemical composition of the gas has been figured out for each computational mesh. A sub-model for the prediction of the soot cake formation has been developed and predictions of soot deposition profiles have been calculated for different loading conditions. The results of the simulations, namely the calculated pressure drop, have been compared with the experimental data.
Technical Paper

A 6-Speed Automatic Transmission Plant Dynamics Model for HIL Test Bench

During the production controller and software development process, one critical step is the controller and software verification. There are various ways to perform this verification. One of the commonly used methods is to utilize an HIL (hardware-in-the-loop) test bench to emulate powertrain hardware for development and validation of powertrain controllers and software. A key piece of an HIL bench is the plant dynamics model used to emulate the external environment of a modern controller, such as engine (ECM), transmission (TCM) or powertrain controller (PCM), so that the algorithms and their software implementation can be exercised to confirm the desired results. This paper presents a 6-speed automatic transmission plant dynamics model development for hardware-in-the-loop (HIL) test bench for the validation of production transmission controls software. The modeling method, model validation, and application in an HIL test environment are described in details.
Technical Paper

A Basic Study of a Driver's Gaze Area Detection System

With the improved safety performance of vehicles, the number of accidents has been decreasing. However, accidents due to driver distraction still occur, which means that there is a high need to determine whether a driver is properly looking at the surroundings. Meanwhile, with the trend toward partial automatic driving of vehicles in recent years, it is also urgently required that the state of the driver be grasped. Even if automatic driving is not installed, it is desired that the state of the driver be grasped and an application for control be performed depending on the state of the driver. Under these circumstances, we have built an algorithm that determines of the direction a driver is looking, to make a basic determination of whether or not the driver is in a state suitable for safe driving of the vehicle.
Technical Paper

A Basic Study of “Energy-Absorbing” Vehicle Structure and Occupant Restraints by Mathematical Model

Simplified mathematical modeling has been employed to investigate the relationship between automobile forestructure energy absorption and the restraint loads applied to passengers during a 30 mph barrier collision. A two-massmodel was developed and validated to compute restraint loading from a given passenger compartment deceleration. The effect of various deceleration curves, representing forestructure modifications, is reported. A “constant force” restraint system is also evaluated.
Technical Paper

A Bioreactor System for the Nitrogen Loop in an Engineered Closed/Controlled Ecosystem

As space missions become longer in duration, the need to recycle waste into useful compounds rises dramatically. This problem can be addressed through the integration of human and plant modules in an ecological life support system. One of the waste streams leaving the human module is urine. In addition to the reclamation of water from urine, recovery of the nitrogen is important because it can be used as a nutrient for the plant module. A 3-step biological process for the conversion of nitrogenous waste (urea) to resource (nitrate) is proposed. Mathematical modeling was used to investigate the bioreactor system, with the goal of maximizing the ratio of performance to volume and energy requirements. Calculations show that separation of the two microbial conversions into two steps requires a smaller total reactor volume than combining them in a single bioreactor.
Technical Paper

A Bistate Control of a Semiactive Automotive Suspension

The purpose of this paper is to develop and experimentally validate a practical and effective technique for the automatic regulation of a hydraulic semiactive vibration absorber (SAVA) for automobiles. The work relies on a consistent hydraulic model of the actuator dynamics that includes the effects of fluid compressibility and a nonlinear viscous loss characteristic. A bistate control algorithm is developed using a Lyapunov approach that seeks to dissipate the energy of the system. The performance of the proposed semiactive damper design on a quarter car model of an automobile suspension is established experimentally on a vibrating test stand. The work provides evidence that the inexpensive hardware design makes it possible to improve the ride and handling performance.
Journal Article

A Central Differential Gear Ratio Optimization of a 6×6 Articulated Dump Truck

This paper starts with an analysis of design configurations of the drivelines with different power-dividing units (PDUs) of main dump truck manufacturing companies. As it follows from the analysis, improvements of articulated truck energy efficiency and reduction of fuel consumption by optimizing the power distribution to the drive wheels are still open issues. The problem is that a variety of operating and terrain conditions of dump trucks requires different wheel power distributions that cannot be provided by one set of PDUs employed in a truck. The central PDU in the transfer case was identified as the most important PDU among the five PDUs, which plays a crucial role in the power distribution between the front axle and the rear tandem of a 6×6 articulated dump truck. The paper formulates a constraint optimization problem to minimize the tire slippage power losses by optimizing the power distribution between the drive wheels.
Technical Paper

A Close-Range Photogrammetric Solution Working with Zoomed Images from Digital Cameras

Close-range photogrammetry (CRP) is traditionally based on a network captured with the camera lens at a fixed focal length. A zoom lens is not desirable without solving the intrinsic camera parameters for varying focal length and lens distortion. When using a zoom lens camera, multiple focal lengths can be used if the camera is calibrated for each varying focal length, but most consumer grade lenses are not designed to accurately return to (or stay at) mid-range focal lengths. Similarly, using close-range photogrammetric software systems to accurately recover three-dimensional (XYZ) data from Point and Shoot (PAS) digital cameras has been problematic when the images were not intended for CRP. PAS cameras are automatically refocused and easily zoomed so the focal length and lens distortion are typically unknown for CRP mensuration purposes. In such circumstances, traditional CRP analysis can be both laborious and difficult without the correct camera parameters.