Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 22853
Event

2024-04-24
Event

2024-04-24
Event

2024-04-24
Event

2024-04-24
Event

2024-04-24
Event

2024-04-24
Event

2024-04-24
Event

2024-04-24
Event

2024-04-24
Event

2024-04-24
Event

2024-04-24
Event

2024-04-24
Event

2024-04-24
Technical Paper

"Electro Gyro-Cator" New Inertial Navigation System for Use in Automobiles

1983-02-01
830659
The Electro Gyro-Cator allows a driver to monitor his progress, plot and follow courses to a destination, select alternate routes, and drive more safely on unfamiliar roads or at night. Employing a sealed helium gas-rate gyro, the Electro Gyro-Cator offers visual display (CRT display) of a car's present location, direction and route, with overlay maps for fast, simple route selection and monitoring. The primary elements of the unit include trip and direction sensors, a 16-Bit central processing unit, a CRT display screen and a collection of transparent overlay maps fitted to the screen.
Technical Paper

"Quattro"-Drive for Every Day Driving

1984-01-01
845070
An essential feature of the Audi Quattro permanent four-wheel drive system is in the inter-axle differential located on the hollow output shaft in the gearbox: the drive is taken from this differential forward to the front differential through the inside of the hollow shaft, and rearward to a propellor shaft driving the rear differential. The major advantages in everyday driving include improved traction and a reduced tendency toward throttle induced changes of attitude. The greater traction allows not only better progress in difficult road conditions; it also gives better acceleration in difficult traffic situations, such as when joining a busy main road. The more easily predictable handling response to throttle changes means that Quattro vehicles have better tracking stability. Altogether, the active safety and "roadability" are considerably improved.
Technical Paper

(CS)2 for Distributed Control Systems: A Better Approach to Developing and Maintaining ECU SW

2007-10-30
2007-01-4182
Electronic control units (ECUs) offer a modular, networked approach to real time machine control and diagnostics. Software embedded in these controllers offer agile and customizable solutions because of the intimate relationship with the ECU hardware and its inputs/outputs. In an idealistic view, embedded software should support the machine's life - 30 years or longer. Developing and maintaining software for these systems requires a strategy. A framework demonstrating common building blocks and long-term centralized support for ECUs on a machine is presented. This strategy reduces the detailed knowledge of the specific machine controls needed by ECU developers and provides the components and infrastructure key to extending the life and functionality of the ECU.
Journal Article

(R)evolution of E/E Architectures

2015-04-14
2015-01-0196
This paper presents an overview of the evolution & revolution of automotive E/E architectures and how we at Bosch, envision the technology in the future. It provides information on the bottlenecks for current E/E architectures and drivers for their evolution. Functionalities such as automated driving, connectivity and cyber-security have gained increasing importance over the past few years. The importance of these functionalities will continue to grow as these cutting-edge technologies mature and market acceptance increases. Implementation of these functionalities in mainstream vehicles will demand a paradigm shift in E/E architectures with respect to in-vehicle communication networks, power networks, connectivity, safety and security. This paper expounds on these points at a system level.
Technical Paper

1-D Model of Radial Turbocharger Turbine Calibrated by Experiments

2002-03-04
2002-01-0377
The 1-D model of a radial centripetal turbine was developed for engine simulation to generalize and extrapolate the results of experiments to high pressure ratio or off-design velocity ratio using calibrated tuning coefficients. The model concerns a compressible dissipative flow in a rotating channel. It considers both bladed or vaneless turbine stators and a twin-entry stator for exhaust pulse manifolds. The experiments were used to find values of all model parameters (outlet flow angles, all loss coefficients including an impeller incidence loss) by an original method using repeated regression analysis. The model is suitable for the prediction of a turbocharger turbine operation and its optimization in 1-D simulation codes.
Technical Paper

1-D Simulation Model Developed for a General Purpose Engine

2016-11-08
2016-32-0030
In recent years, improvements in the fuel economy and exhaust emission performance of internal combustion engines have been increasingly required by regulatory agencies. One of the salient concerns regarding general purpose engines is the larger amount of CO emissions with which they are associated, compared with CO emissions from automobile engines. To reduce CO and other exhaust emissions while maintaining high fuel efficiency, the optimization of total engine system, including various design parameters, is essential. In the engine system optimization process, cycle simulation using 0-D and 1-D engine models are highly useful. To define an optimum design, the model used for the cycle simulation must be capable of predicting the effects of various parameters on the engine performance. In this study, a model for predicting the performance of a general purpose SI (Spark Ignited) engine is developed based on the commercially available engine simulation software, GT-POWER.
Technical Paper

10 KWe Dual-Mode Space Nuclear Power System for Military and Scientific Applications

1992-08-03
929072
A 10 KWe dual-mode space power system concept has been identified which is based on INEL's Small Externally-fueled Heat Pipe Thermionic Reactor (SEHPTR) concept. This power system will enhance user capabilities by providing reliable electric power and by providing two propulsion systems; electric power for an arc-jet electric propulsion system and direct thrust by heating hydrogen propellant inside the reactor. The low thrust electric thrusters allow efficient station keeping and long-term maneuvering. The direct thrust capability can provide tens of pounds of thrust at a specific impulse of around 730 seconds for maneuvers that must be performed more rapidly. The direct thrust allows the nuclear power system to move a payload from Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO) in less than one month using approximately half the propellant of a cryogenic chemical stage.
X