Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Analysis of the Effects of Certain Alcohol and Furan-Based Biofuels on Controlled Auto Ignition

For gasoline engines controlled autoignition provides the vision of enabling the fuel consumption benefit of stratified lean combustion systems without the drawback of additional NOx aftertreatment. In this study the potential of certain biofuels on this combustion system was assessed by single-cylinder engine investigations using the exhaust strategy "combustion chamber recirculation" (CCR). For the engine testing sweeps in the internal EGR rate with different injection strategies as well as load sweeps were performed. Of particular interest was to reveal fuel differences in the achievable maximal load as well as in the NOx emission behavior. Additionally, experiments with a shock tube and a rapid compression machine were conducted in order to determine the ignition delay times of the tested biofuels concerning controlled autoignition-relevant conditions.
Technical Paper

Characterization of Oxygenated-Fuel Combustion by Quantitative Multiscalar SRS/LIF Measurements in a Diesel-Like Jet

Due to experimental challenges, combustion of diesel-like jets has rarely been characterized by laser-based quantitative multiscalar measurements. In this work, recently developed laser diagnostics for combustion temperature and the concentrations of CO, O2, and NO are applied to a diesel-like jet, using a highly oxygenated fuel. The diagnostic is based on spontaneous Raman scattering (SRS) and laser-induced fluorescence (LIF) methods. Line imaging yields multiscalar profiles across the jet cross section. Measurements turn out to be particularly accurate, because near-stoichiometric combustion occurs in the central region of the jet. Thereby, experimental cross-influences by light attenuation and interfering emissions are greatly reduced compared to the combustion of conventional, sooting diesel fuel jets. This is achieved by fuel oxygenation and enhanced premixing.
Technical Paper

Injection Rate Shaping Investigations on a Small – Bore DI Diesel Engine

So far, the effect of injection rate shaping on the diesel combustion in small-bore DI diesel engines has not been extensively investigated, especially at high part load conditions with high EGR rates. The benefit of injection rate shaping is already verified for heavy duty engines at high load conditions with and without EGR. For this investigation, single cylinder engine investigations were conducted at the VKA / RWTH Aachen University. In order to meet the future NOx legislation limits like US-Tier2Bin5 it is crucial to reduce NOx especially at the high load points of the certification cycles, as FTP75 or US06. For the single cylinder investigations two part load points were chosen, which have relevance for the mentioned certification cycles. The experimental work focuses on different rate shapes as rectangular (Common-Rail type), ramp and boot shape at high EGR rates.
Journal Article

Thermal Shock Protection for Diesel Particulate Filters

During a thermal regeneration of a Diesel particulate filter (DPF) the temperature inside the DPF may raise above critical thresholds in an uncontrolled way (thermal shock). Especially driving conditions with a comparable low exhaust gas mass flow and high oxygen content like idle speed may create a thermal shock. This paper presents a concept for an ECU software structure to prevent the DPF from reaching improper temperatures and the methodology in order to calibrate this ECU structure. The concept deals in general with a closed-loop control of the exhaust gas air-fuel-ratio during the critical engine operation phases. Those critical operation phases are identified at the engine test bench during “Drop-to-Idle” and “Drop-to-Overrun” experiments. The experiments show that those phases are critical having on the one hand a low exhaust gas mass flow and on the other hand a high oxygen percentage in the exhaust gas.
Technical Paper

Type Analysis of EGR-Strategies for Controlled Auto Ignition (CAI) by Using Numerical Simulations and Optical Measurements

The main assignment of Controlled Auto Ignition (CAI) operation range expansion is to reduce the burn rate or combustion noise at high load and to minimize misfire at low load. The potential of two principal EGR strategies is well known to initiate CAI in a wide range of operation map by using a variable train system: the Exhaust Port Recirculation (EPR) for higher part load and the Combustion Chamber Recirculation (CCR - also called Negative Valve Overlap) for lower part load. However the detailed comparison of the ignition phenomena with each EGR strategy has not been fully studied yet. In this paper, EPR and CCR were compared with same operational condition (engine speed and load). For the analysis, flame luminescence and Raman scattering method for optical measurement and STAR-CD (CD-adapco) for numerical simulation are used.