Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Aggregate Emissions from the Automobile Population

1974-02-01
740536
A methodology is presented with which aggregate emissions from the in-use automobile population can be calculated for any given calendar year. The data base needed for such a calculation is discussed, and areas in which further research is needed are pointed out. Results of a series of calculations are then presented showing the effect on aggregate emissions of various control strategies. The effects of an inspection/maintenance and retrofit program, different vehicle population growth rates, catalyst deterioration in use, and various schedules of new car emission standards for post-1975 vehicles are presented. It is shown that the rate at which old, higher-polluting vehicles are retired from the in-use vehicle population is the major factor in determining the rate at which aggregate emissions will decrease in the 1970s, with the precise level of post-1975 standards only becoming important in the 1980s.
Technical Paper

Characterization of Catalyzed Soot Oxidation with NO2, NO and O2 using a Lab-Scale Flow Reactor System

2008-04-14
2008-01-0482
Today's diesel PM reduction systems are mainly based on catalyzed particulate filter(CPF) systems. However, most of their reaction kinetics remain unresolved. Among others, the soot oxidation rate over catalyst is particularly important in the evaluation of the performance of the catalysts and the efficient control of CPF regeneration. This study, therefore, investigated the oxidation rate of carbon black (Printex-U) over various Pt supported catalysts using a flow reactor setup simulating diesel exhaust conditions. Compared to non-catalyzed soot oxidation, the oxidation rate of carbon black over Pt catalysts was to an extent shifted towards low temperatures. This activity enhancement of soot oxidation over a catalyst can be attributed principally to NO to NO2 conversion because NO2 oxidizes soot with much lower activation energy (Ea=60kJ/mol) than O2 (Ea=177kJ/mol).
Journal Article

Effects of Secondary Air Injection During Cold Start of SI Engines

2010-10-25
2010-01-2124
An experimental study was performed to develop a more fundamental understanding of the effects of secondary air injection (SAI) on exhaust gas emissions and catalyst light-off characteristics during cold start of a modern SI engine. The effects of engine operating parameters and various secondary air injection strategies such as spark retardation, fuel enrichment, secondary air injection location and air flow rate were investigated to understand the mixing, heat loss, and thermal and catalytic oxidation processes associated with SAI. Time-resolved HC, CO and CO₂ concentrations were tracked from the cylinder exit to the catalytic converter outlet and converted to time-resolved mass emissions by applying an instantaneous exhaust mass flow rate model. A phenomenological model of exhaust heat transfer combined with the gas composition analysis was also developed to define the thermal and chemical energy state of the exhaust gas with SAI.
Technical Paper

Experimental Study on DeNOx Performance by Plasma-Catalyst (Ag, Au/Al2O3) System

2002-10-21
2002-01-2705
Plasma-catalyst (Ag, Au/Al2O3) systems were applied to NOx reduction in a model lean-burn engine exhaust gas. Also, DeNOx test of real diesel exhaust gas was performed by plasma-Ag/Al2O3 system. In the case of model exhaust gas, the catalytic activity for NOx reduction was enhanced by the assistance of plasma in the wide temperature range. The NOx conversion efficiency of plasma-Ag/Al2O3 was 40∼90% under the condition of C3 H6 3200ppm (C1/NOx = 5.96) and 10% O2 over the temperature range of 250∼400°C. The plasma-Au/Al2 O3 system showed remarkable low temperature NOx reduction activity at 100∼250°C. The real engine full flow test was performed for 70% of the full load and at engine speed of 1500rpm. NOx removal of 46% from the diesel exhaust gas was achieved by the plasma-Ag/Al2O3 catalyst system at 364°C(C1/NOx = 6). In the case of higher C1/NOx = 10, the NOx conversion increased up to 73% at 381°C. Also, DeNOx engine tests were performed for full load of 1500, 2000 and 2500rpm.
Technical Paper

Experimental Study on Soot Oxidation Characterization of Pt/CeO2 Catalyst with NO and O2 Using a Flow Reactor System

2009-04-20
2009-01-1475
The oxidation of soot (carbon black) which is assisted by Pt/CeO2 catalyst is studied using a flow reactor system simulating the condition of diesel exhaust. In this study, the temperature programmed oxidation (TPO) scheme is mainly used for different NO and O2 concentrations and soot oxidation rate is evaluated by monitoring both CO and CO2 concentrations. Pt/CeO2 catalyst lowers the temperature of the peak CO/CO2 concentrations significantly when there is either NO or O2. Oxidation starts at 200°C and the peak CO2 concentration is observed at 360°C, which depends on the amount of catalyst and NO concentration. The effect of catalyst on NO2 recycling is also investigated. For this purpose, two different types of sample have been prepared. For the mixed case, 10mg of carbon black is mixed with 50mg of Pt/CeO2 catalyst under conditions of loose contact. For the unmixed case, the catalyst layer is placed on top of soot layer without mixing.
Technical Paper

Experimental Study on the Oxidation of Model Gases - Propylene, N-Butane, Acetylene at Ambient Temperature by Non-Thermal Plasma and Photocatalyst

2001-09-24
2001-01-3514
Two features to facilitate chemical reactions at low temperature, non-thermal plasma and the weak dependency of photocatalyst on temperature, have been exploited by many researchers to effectively decompose hydrocarbon emissions emitted until the light-off of a three-way catalyst in spark ignition engines. To develop a realizable emissions reduction reactor, as part of such effort, this study investigates for the three model gases, propylene, n-butane and acetylene: 1) the conversion efficiency of the emissions reduction reactor, which utilizes the effect of dissociation, ionization-by-collision of the non-thermal plasma and the photocatalytic effect of TiO2, and 2) the concentrations of the products such as acetaldehyde, acetic acid, polymerized hydrocarbons and NO2. The operating parameters to obtain the plasma energy density ranging from 7.8 to 908 J/L were varied.
Journal Article

Fuel Economy Benefits and Aftertreatment Requirements of a Naturally Aspirated HCCI-SI Engine System

2008-10-06
2008-01-2512
This vehicle simulation study estimates the fuel economy benefits of an HCCI engine system and assesses the NOx, HC and CO aftertreatment performance required for compliance with emissions regulations on U.S. and European regulatory driving cycles. The four driving cycles considered are the New European Driving Cycle, EPA City Driving Cycle, EPA Highway Driving Cycle, and US06 Driving Cycle. For each driving cycle, the following influences on vehicle fuel economy were examined: power-to-weight ratio, HCCI combustion mode operating range, driving cycle characteristics, requirements for transitions out of HCCI mode when engine speeds and loads are within the HCCI operating range, fuel consumption and emissions penalties for transitions into and out of HCCI mode, aftertreatment system performance and tailpipe emissions regulations.
Technical Paper

Hydrogen Effect on the DeNOX Efficiency Enhancement of Fresh and Aged Ag/Al2O3 HC-SCR in a Diesel Engine Exhaust

2011-04-12
2011-01-1278
HC-SCR is more convenient when compared to urea-SCR, since for HC-SCR, diesel fuel can be used as the reductant which is already available onboard the vehicle. However, the DeNOX efficiency for HC-SCR is lower than that of urea-SCR in both low and high temperature windows. In an attempt to improve the DeNOX efficiency of HC-SCR, the effect of hydrogen were evaluated for the fresh and aged catalyst over 2 wt.% Ag/Al₂O₃ using a Euro-4 diesel engine. In this engine bench test, diesel fuel as the reductant was injected directly into the exhaust gas stream and the hydrogen was supplied from a hydrogen bomb. The engine was operated at 2,500 rpm and BMEP 4 bar. The engine-out NOX was around 180 ppm-200 ppm. H₂/NOX and HC₁/NOX ratios were 5, 10, 20, and 3, 6, 9, respectively. The HC-SCR inlet exhaust gas temperatures were around 215°C, 245°C, and 275°C. The catalyst volumes used in this test were 2.5L and 5L for both fresh and aged catalysts.
Technical Paper

Plasma/Catalyst System for Reduction of NOx in Diesel Engine Exhaust

2000-10-16
2000-01-2897
NOx reduction by a plasma/catalyst system was tested with modeled gas and real exhaust gas. Ag/Al2O3 was used as the catalyst. The oxidation of NO to NO2 by the plasma was increased as HC concentration and input energy density increase. The presence of H2O in the reactant gas led to the production of acid by plasma. The catalytic activity for NOx reduction was enhanced by the assistance of plasma especially in the lower temperature region. This activity was a little suppressed in the presence of H2O, but the acid was not detected in the effluent gas treated by the plasma/catalyst system. The NOx conversion to N2 was evaluated by a gas chromatography in the model gas with helium as the balance gas. The result in helium balance gas showed the selectivity to N2 depended on the catalyst temperature and was also enhanced by the assistance of plasma. The 50% of NOx removal from the diesel exhaust gas was achieved by the plasma /catalyst system.
Technical Paper

The Study of the Effects of Nonthermal Plasma-Photocatalyst Combined Reactor on Hydrocarbon Decomposition and Reduction during Cold Start and Warm-up in a SI Engine

2002-10-21
2002-01-2707
Among the recent research ideas to reduce hydrocarbon emissions emitted from SI engines till light-off of catalyst since cold start are those exploiting non-thermal plasma technique and photo-catalyst that draws recent attention by virtue of its successful application to practical use to clean up the atmosphere using the feature of its relative independence on temperature. Based on the previous research results [6] obtained with model exhaust gases using an experimental emissions reduction system that utilizes the non-thermal plasma and photo-catalyst technique, further investigation was conducted on a production N/A 1.5 liter DOHC gasoline engine during cold start to warm-up. For the effects of non-thermal plasma-photocatalyst combined reactor, 10% concentration reduction was achieved with the fuel component paraffins, and the large increase in non-fuel paraffinic components and acetylene concentrations were similar to those of base condition.
X