Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

(Particle) Emissions of Small 2-& 4-Stroke Scooters with (Hydrous) Ethanol Blends

2010-04-12
2010-01-0794
The objectives of the present work are to investigate the regulated and unregulated (particle) emissions of a classical and modern 2-stroke and a typical 4-stroke scooter with different ethanol blend fuels. There is also comparison of two different ethanol fuels: pure ethanol (E) *) and hydrous ethanol (EH) which contains 3.9% water and is denatured with 1.5% gasoline. Special attention is paid in this research to the hydrous ethanol, since the production costs of hydrous ethanol are much less than those for (dry) ethanol. The vehicles are with carburettor and without catalyst, which represents the most frequent technology in Eastern Asia and offers the information of engine-out emissions. Exhaust emissions measurements have been performed with fuels containing ethanol (E), or hydrous ethanol (EH) in the portion of 5, 10, 15 and 20% by volume. During the test systematical analysis of particle mass (PM) and nano-particles counts (NP) were carried out.
Journal Article

0W-16 Fuel Economy Gasoline Engine Oil Compatible with Low Speed Pre-Ignition Performance

2017-10-08
2017-01-2346
It has been long established fact that fuel economy is a key driving force of low viscosity gasoline engine oil research and development considered by the original equipment manufacturers (OEMs) and lubricant companies. The development of low viscosity gasoline engine oils should not only focus on fuel economy improvement, but also on the low speed pre-ignition (LSPI) prevention property. In previous LSPI prevention literatures, the necessity of applying Ca/Mg-based detergents system in the engine oil formulations was proposed. In this paper, we adopted a specific Group III base oil containing Ca-salicylate detergent, borated dispersant, Mo-DTC in the formulation and investigated the various effects of Mg-salicylate and Mg-sulfonate on the performance of engine oil. It was found that Mg-sulfonate showed a significant detrimental impact on silicone rubber compatibility while the influence from Mg-salicylate remains acceptable.
Technical Paper

1.8L Sierra-Mondeo Turbo-Diesel Valvetrain Friction Reduction Using a Solid Film Lubricant

1994-10-01
941986
A 1.8L turbocharged diesel engine valvetrain friction was investigated, and the effectiveness of using a solid film lubricant (SFL) coating in reducing friction was determined throughout the operable speed range. This valvetrain design features direct acting mechanical bucket valve lifters. Camshaft journal bearing surfaces and all camshaft rubbing surfaces except lobe tips were coated. The direct acting bucket shims were etched with a cross hatch pattern to a depth sufficient to sustain a SFL film coating on the shim rubbing surfaces subjected to high surface loads. The SFL coated valvetrain torque was evaluated and compared with uncoated baseline torque. Coating the cam bearing journal surfaces alone with II-25D SFL reduced valvetrain friction losses 8 to 17% for 250 to 2000 rpm cam speed range (i.e. 500 - 4000 rpm engine speed). When bucket tappet and shims were also coated with the SFL, further significant reductions in coated valvetrain friction were observed.
Technical Paper

100,000 Miles of Fueling 5.9L Cummins Engines with 100% Biodiesel

1996-10-01
962233
Two Cummins B5.9L engines were fueled with 100% biodiesel in excess of 48 months by the Agricultural Engineering Department at the University of Missouri-Columbia. The engines used to power Dodge pickups. The engine lubricating oil was sampled at 1000 mile intervals for analysis. Statistical analysis of the engine lubricating oil indicated that the wear metal levels in the lubricating oil were normal. A reduction in power was noted when the engines were tested using a chassis dynamometer. The 1991 pickup has been driven 110,451 km and the 1992 pickup has been driven approximately 177,022 km. The pickups averaged 6.9 km/L. Engine fuel efficiency and material compatibility issues are addressed in the paper.
Technical Paper

100,000-Mile Evaluation of Transit Buses Operated on Biodiesel Blends (B20)

2006-10-16
2006-01-3253
Nine identical 40-ft. transit buses were operated on B20 and diesel for a period of two years - five of the buses operated exclusively on B20 (20% biodiesel blend) and the other four on petroleum diesel. The buses were model year 2000 Orion V equipped with Cummins ISM engines, and all operated on the same bus route. Each bus accumulated about 100,000 miles over the course of the study. B20 buses were compared to the petroleum diesel buses in terms of fuel economy, vehicle maintenance cost, road calls, and emissions. There was no difference between the on-road average fuel economy of the two groups (4.41 mpg) based on the in-use data, however laboratory testing revealed a nearly 2% reduction in fuel economy for the B20 vehicles. Engine and fuel system related maintenance costs were nearly identical for the two groups until the final month of the study.
Technical Paper

1962 passenger-car engineering trends

1962-01-01
620066
The phenomenal success of the small car is leading to many engineering changes in the automobile industry. It has brought increased emphasis on weight reduction on both small and full-size cars. Improving reliability and designing to eliminate grease fittings have also become important objectives.
Technical Paper

26 Development of “BF-Coat” for Snowmobile Piston

2002-10-29
2002-32-1795
The pistons in a snowmobile engine are subjected to severe temperature conditions not only because snowmobiles are operated in extremely cold temperatures but also because the engine has a high output per unit volume of approximately 150kW/liter. The temperature of the piston top may go from -40°C (when a cold engine is started) to 400°C or higher (when the engine is running at full load). When the piston and cylinder inner wall are cold, the performance of the lubricating oil drops; when they are hot, scuffing may be produced by problems such as tearing of the oil film between the piston and cylinder. When the engine is run at full load for a long time, moreover, the piston is subjected to prolonged high-temperature use, which is conducive to the production of piston boss hole abrasion and ring groove adhesive wear.
Technical Paper

50,000km On-Road Durability Test of Common-Rail Vehicle with 10% Blend of High Quality Biodiesel (H-FAME) from Jatropha

2015-03-30
2015-01-0115
The effects of high quality biodiesel, namely, partially Hydrogenated Fatty Acid Methyl Ester or H-FAME, on 50,000km on-road durability test of unmodified common-rail vehicle have been investigated. Thailand popular brand new common-rail light duty vehicle, Isuzu D-Max Spacecab, equipped with 4JK1-STD engine (DOHC 4-cylinder 2.5L, M/T 4×2, Euro III emission) was chosen to undergo on-road test composed of well-mixed types of mountain, suburb and urban road conditions over the entire 50,000km. Jatropha-derived high quality biodiesel, H-FAME, conforming to WWFC (worldwide fuel charter) specification, was blended with normal diesel (Euro IV) at 10% (v/v) as tested fuel. Engine performance (torque and power), emission (CO, NOx, HC+NOx and PM), fuel consumption and dynamic response (0-100km acceleration time and maximum velocity) were analyzed at initial, middle and final distance; whereas, used lube oil analysis was conducted every 10,000km.
Technical Paper

50,000km On-Road Durability Test of Common-Rail Vehicle with 20% Blend of High Quality Palm Biodiesel (H-FAME)

2016-03-27
2016-01-1736
The effects of high quality biodiesel, namely, partially Hydrogenated Fatty Acid Methyl Ester or H-FAME, on 50,000km on-road durability test of unmodified common-rail vehicle have been investigated. Thailand brand new common-rail light duty vehicle, Isuzu D-Max Extended cab, equipped with 4JK1-TCX engine (DOHC 4-cylinder 2.5L, M/T 4×2, Euro IV emission) was chosen to undergo on-road test composed of well-mixed types of mountain, suburb and urban road conditions over the entire 50,000km. Palm-derived high quality biodiesel, H-FAME, conforming to WWFC (worldwide fuel charter) specification, was blended with normal diesel (Euro IV) at 20% (v/v) as tested fuel. Engine performance (torque and power), emission (CO, NOx, HC+NOx and PM), fuel consumption and dynamic response (0-100km acceleration time and maximum velocity) were analyzed at initial, middle and final distance; whereas, used lube oil analysis was conducted every 10,000km.
Technical Paper

A Bearing Life Prediction Method for Utilizing Progressive Functional Surface Damage Analysis from a Debris Contaminated Lubrication Environment

1999-09-13
1999-01-2793
Many lubrication environments in various equipment applications are inherently contaminated with debris and require mechanical components that are, as much as possible, resistant to the potential detrimental effects of debris particles. Many design engineers and lubricant specialists often overlook potential relationships between the various component failure modes, lubricant debris contamination levels, and engineering solutions that are created to overcome them. In addition, design engineers are in need of an analysis tool that can combine the various amounts of cumulative bearing damage occurring over time. As an example, bearing functional surfaces in many cases are progressively damaged over the life of the equipment. A new surface analysis tool is available which allows surface damage analysis to be completed at various stages of equipment life. This new surface analysis tool is appropriately called Debris Signature Analysis(sm).
Technical Paper

A Bench Technique for Evaluating High Temperature Oxidation and Corrosion Tendencies of Automotive Crankcase Lubricants

1968-02-01
680538
A technique for evaluating high temperature oxidation and corrosion tendencies of automotive crankcase lubricants is described. The technique utilizes a versatile bench apparatus which, with a minimum of modification, can be used for either evaluating thermal oxidation stability of gear lubricants or oxidation-corrosion tendencies of automotive crankcase lubricants. The apparatus is relatively compact and requires a minimal lubricant sample. Design of the apparatus permits close control of all operating parameters and provides satisfactory test data repeatability. Retainable copper-lead test bearings are used as the indicator in predicting a pass or fail of fully formulated crankcase lubricants as in the case of the CRC L-38-559 (Federal Test Method 3405) technique. Engine and bench test data are compared to illustrate the capabilities of this new bench technique.
Technical Paper

A Case Study in the Use of Statistical Experimental Design and Data Analysis in Lubricant Formulation

2000-06-19
2000-01-1963
This case study illustrates the value of employing statistical experimental design and data analysis when formulating lubricants. A fractional factorial experimental design enabled all main effects of 6 formulation variables, plus 6 important 2-factor interactions, to be estimated from a total of only 16 runs. The design also allowed the engine to be serviced during the test programme without biasing the conclusions. The statistical analysis of the resulting data is also described. Data from a reference oil were used to augment the test data and clarify the conclusions.
Technical Paper

A Cold Look at Lubricants

1971-02-01
710716
The increased industrial and commercial activities in the Arctic areas of the world have led to the development of special performance lubricants to meet these requirements. The technical requirements to meet the exigencies of commercial operation in the Arctic are discussed along with several lubricant approaches. The relative merits of the various types of lubricants including synthesized fluids, are presented together with the different areas of application.
Technical Paper

A Comparison of Exhaust Pipe, Dilution Tunnel and Roadside Diesel Particulate SOF and Gaseous Hydrocarbon Emissions

1988-02-01
880351
The solvent organic fraction (SOF) of particulates from the exhaust pipe of a diesel engine, a dilution tunnel and a roadside sample are compared. Three different techniques of SOF analysis are also compared, vacuum oven, solvent extraction and pyroprobe/GC. Gaseous hydrocarbons and the methane contribution were measured in the exhaust pipe throughout the speed and load range of the engine at 185 C and 2 C. The unburnt hydrocarbons decreased with air/fuel ratio for all speeds and there was an overall decrease in emissions with increasing speed. The differential temperature technique showed the maximum mass of hydrocarbon which could condense from the gas phase onto the particulate as the SOF. The method compared well with the actual SOF of the tunnel particulate.
Technical Paper

A Comparison of Fatigue Test Techniques for Gas Turbine Oils - (Report of the CRC-Aviation Bearing Fatigue Panel of the Group on Gas Turbine Lubrication)

1968-02-01
680322
A number of specimen life performance tests were conducted on three test lubricants selected to demonstrate their gross ranking capabilities. The results indicated that the test rigs should be used only for gross ranking. A large difference in magnitude of life values were obtained even though agreement in gross ranking was obtained by three out of the five participating laboratories. Further testing is recommended under preselected test conditions and lubricants.
Technical Paper

A Comparison of Gasoline Direct Injection and Port Fuel Injection Vehicles: Part II - Lubricant Oil Performance and Engine Wear

1999-05-03
1999-01-1499
Four 1998 Mitsubishi Carismas, two equipped with direct injection (GDI) and two with port fuel injection engines (PFI) were tested in a designed experiment to determine the effect of mileage accumulation cycle, engine type, fuel and lubricant type on engine wear and engine oil performance parameters. Fuel types were represented by an unadditised base fuel meeting EEC year 2000 specifications and the same base fuel plus synthetic deposit control additive packages. Crankcase oils were represented by two types (1) a 5W-30 API SJ/ILSAC GF-2 type engine oil and (2) a 10W-40 API SH/CF ACEA A3/ B3-96 engine oil. The program showed that specific selection of oil additive chemistry may reduce formation of intake valve deposits in GDI cars.. In general, G-DI engines produced more soot and more pentane insolubles and were found to be more prone to what appears to be soot induced wear than PFI engines.
Technical Paper

A Comparison of Neural Network and Partial Least Squares Approaches in Correlating Base Oil Composition to Lubricant Performance in Gasoline Engine Tests and Industrial Oil Applications

1995-10-01
952534
Since the base oil component of engine oils, driveline fluids and industrial lubricants typically exceeds 80 wt. % of the formulation, the complex chemical composition of base oils is a critical parameter in defining the ultimate performance of the finished products into which they are blended. Using both statistical and Neural Network methods, we have correlated the relative distribution of molecular types such as aromatics, naphthenes, paraffins and certain sulfur-containing species to lubricant performance in the ASTM Sequence IIIE and VE gasoline engine tests as well as the ASTM D-943 test which measures the long-term oxidative stability of industrial oils. For all cases, the “modeling” procedures enable approximately 20 input variables (compositional parameters, VI, aniline point) to be used to predict the output ratings of the respective test procedures.
Technical Paper

A Comparison of Some Biodegradable Hydraulic Fluids and Engine Oils

2002-03-19
2002-01-1498
Environmentally friendly fuels and lubricants research on hydraulic fluids, engine oils, greases and industrial applications is of interest to government agencies and manufacturers of equipment, engines and vehicles. The key to increasing the use of renewable natural resources is developing fluids of equivalent performance to petroleum base products, at an acceptable product cost. The well known drawbacks of vegetable oils are oxidation stability and low temperature properties. This study compares commercial fluids and laboratory formulations as to their rheological properties and uses different approaches to solve both the low temperature and the oxidative stability problems. Frictions and wear characteristics of the fluids are evaluated and several fluids are compared laboratory bench tests.
X