Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

(Particle) Emissions of Small 2-& 4-Stroke Scooters with (Hydrous) Ethanol Blends

2010-04-12
2010-01-0794
The objectives of the present work are to investigate the regulated and unregulated (particle) emissions of a classical and modern 2-stroke and a typical 4-stroke scooter with different ethanol blend fuels. There is also comparison of two different ethanol fuels: pure ethanol (E) *) and hydrous ethanol (EH) which contains 3.9% water and is denatured with 1.5% gasoline. Special attention is paid in this research to the hydrous ethanol, since the production costs of hydrous ethanol are much less than those for (dry) ethanol. The vehicles are with carburettor and without catalyst, which represents the most frequent technology in Eastern Asia and offers the information of engine-out emissions. Exhaust emissions measurements have been performed with fuels containing ethanol (E), or hydrous ethanol (EH) in the portion of 5, 10, 15 and 20% by volume. During the test systematical analysis of particle mass (PM) and nano-particles counts (NP) were carried out.
Journal Article

0W-16 Fuel Economy Gasoline Engine Oil Compatible with Low Speed Pre-Ignition Performance

2017-10-08
2017-01-2346
It has been long established fact that fuel economy is a key driving force of low viscosity gasoline engine oil research and development considered by the original equipment manufacturers (OEMs) and lubricant companies. The development of low viscosity gasoline engine oils should not only focus on fuel economy improvement, but also on the low speed pre-ignition (LSPI) prevention property. In previous LSPI prevention literatures, the necessity of applying Ca/Mg-based detergents system in the engine oil formulations was proposed. In this paper, we adopted a specific Group III base oil containing Ca-salicylate detergent, borated dispersant, Mo-DTC in the formulation and investigated the various effects of Mg-salicylate and Mg-sulfonate on the performance of engine oil. It was found that Mg-sulfonate showed a significant detrimental impact on silicone rubber compatibility while the influence from Mg-salicylate remains acceptable.
Technical Paper

1.8L Sierra-Mondeo Turbo-Diesel Valvetrain Friction Reduction Using a Solid Film Lubricant

1994-10-01
941986
A 1.8L turbocharged diesel engine valvetrain friction was investigated, and the effectiveness of using a solid film lubricant (SFL) coating in reducing friction was determined throughout the operable speed range. This valvetrain design features direct acting mechanical bucket valve lifters. Camshaft journal bearing surfaces and all camshaft rubbing surfaces except lobe tips were coated. The direct acting bucket shims were etched with a cross hatch pattern to a depth sufficient to sustain a SFL film coating on the shim rubbing surfaces subjected to high surface loads. The SFL coated valvetrain torque was evaluated and compared with uncoated baseline torque. Coating the cam bearing journal surfaces alone with II-25D SFL reduced valvetrain friction losses 8 to 17% for 250 to 2000 rpm cam speed range (i.e. 500 - 4000 rpm engine speed). When bucket tappet and shims were also coated with the SFL, further significant reductions in coated valvetrain friction were observed.
Technical Paper

100,000 Miles of Fueling 5.9L Cummins Engines with 100% Biodiesel

1996-10-01
962233
Two Cummins B5.9L engines were fueled with 100% biodiesel in excess of 48 months by the Agricultural Engineering Department at the University of Missouri-Columbia. The engines used to power Dodge pickups. The engine lubricating oil was sampled at 1000 mile intervals for analysis. Statistical analysis of the engine lubricating oil indicated that the wear metal levels in the lubricating oil were normal. A reduction in power was noted when the engines were tested using a chassis dynamometer. The 1991 pickup has been driven 110,451 km and the 1992 pickup has been driven approximately 177,022 km. The pickups averaged 6.9 km/L. Engine fuel efficiency and material compatibility issues are addressed in the paper.
Technical Paper

100,000-Mile Evaluation of Transit Buses Operated on Biodiesel Blends (B20)

2006-10-16
2006-01-3253
Nine identical 40-ft. transit buses were operated on B20 and diesel for a period of two years - five of the buses operated exclusively on B20 (20% biodiesel blend) and the other four on petroleum diesel. The buses were model year 2000 Orion V equipped with Cummins ISM engines, and all operated on the same bus route. Each bus accumulated about 100,000 miles over the course of the study. B20 buses were compared to the petroleum diesel buses in terms of fuel economy, vehicle maintenance cost, road calls, and emissions. There was no difference between the on-road average fuel economy of the two groups (4.41 mpg) based on the in-use data, however laboratory testing revealed a nearly 2% reduction in fuel economy for the B20 vehicles. Engine and fuel system related maintenance costs were nearly identical for the two groups until the final month of the study.
Technical Paper

1937 Road Knock Tests

1938-01-01
380145
THIS paper deals with the road-test portion of the extensive efforts made during 1937 by the Cooperative Fuel Research Committee to get as precise a correlation as possible between the laboratory knock ratings of automobile fuels and their corresponding ratings in cars on the road. It is anticipated that the comprehensive results of car tests reported here, taken together with the results of the laboratory rating program reported in the companion paper, will serve as the basis of the continuing studies aimed at developing the best possible correlation between road and laboratory knock ratings. Work similar to that reported here has been conducted concurrently in England by the Institution of Petroleum Technologists, using British cars and fuels. An exchange of information between the British and American groups working on this problem is being made.
Technical Paper

1940 ROAD DETONATION TESTS - (Compiled from Report1 of The Cooperative Fuel Research Committee)

1941-01-01
410107
THE 1940 CFR Road Tests have developed new information that can be used for the development of fuels and engines. Application of the principles worked out in these tests is expected to result in a more efficient utilization of fuel antiknock properties and more effective engine design and adjustment to meet the requisites of current motor fuels. These tests indicate that the ASTM octane number alone, or even a road octane number as determined by methods heretofore widely used, does not give sufficient information for present needs relative to fuel behavior in service. Neither do test methods previously used provide sufficient information concerning the fuel requirements and knocking characteristics of engines. The new methods of approach which have been developed furnish needed information relative to the fuel and engine relationship that heretofore has been obscure, and indicate paths for future developments.
Technical Paper

1941 CFR ROAD DETONATION TESTS - Further Experience with New Methods (Compiled from Report of the Cooperative Fuel Research Committee)

1942-01-01
420122
The cooperative road tests carried out during 1941 have added considerable information and experience to that already existing on the subject of road detonation testing. Extensive data were obtained on the fuel requirements of the 1940 and 1941 models of the three most popular cars. Corresponding data were obtained on the knocking characteristics of current gasolines representing the bulk of the sales volume in various parts of the United States. On account of large variations in octane-number requirement among different cars of the same make - due to differences in ignition timing, combustion-chamber deposit, and other causes - and on account of variations in commercial gasolines, it has been necessary to use statistical methods of analysis in the appraisal of fuel and engine relationships. These methods of analysis have been applied in a number of ways, and have proved very useful.
Technical Paper

1962 passenger-car engineering trends

1962-01-01
620066
The phenomenal success of the small car is leading to many engineering changes in the automobile industry. It has brought increased emphasis on weight reduction on both small and full-size cars. Improving reliability and designing to eliminate grease fittings have also become important objectives.
Technical Paper

1963 Pure Oil Performance Trials

1963-01-01
630280
Background of the Pure Oil performance trials on six classes of automobiles is presented and the evolution of test requirements described. Three tests are run: the economy test to establish how far a vehicle can go over a prescribed course on one gallon of gasoline; the acceleration test which determines acceleration time from 25 to 70 mph in seconds; and the braking test where stopping distance in feet is measured for a stop from 60 mph. Each test is described from the point of view of rules, recording instruments, and penalties for infractions of rules. Test results are presented.
Technical Paper

1971 Cars and the “New” Gasolines

1971-02-01
710624
The recent introduction of lower compression ratio engines and the concurrent marketing of unleaded and low-lead content gasolines of generally lower octane number made it appropriate to investigate the interrelationships of engine performance and gasoline octane quality using the “new” engines and fuels. Programs were carried out to compare fuel economy and acceleration performance of eight matched pairs of 1970 and 1971 automobiles. In addition, octane requirements were obtained on 43 1971 cars with 3,000-12,000 deposit miles. A total of 146 unleaded, low-lead, and leaded regular gasolines obtained at service stations throughout the country were analyzed, and the road octane performance of these gasolines was determined using 1970 and 1971 cars designed for regular gasoline.
Technical Paper

1980 CRC Fuel Rating Program - The Effects of Heavy Aromatics and Ethanol on Gasoline Road Octane Ratings

1982-02-01
821211
A gasoline Road Octane study was conducted by the Coordinating Research Council (CRC) to evaluate the effects of heavy aromatics (C9 and heavier) and ethanol content on Road Octane performance independent of Research Octane Number (RON) and Motor Octane Number (MON). Maximum-throttle and part-throttle Road ON’s were found to be well predicted by equations containing only RON and MON terms. Heavier aromatics were found to have a small adverse effect on both maximum-throttle and part-throttle Road ON independent of its direct effects on RON and MON. The all-car data did not show a significant ethanol-content effect, but eight of the thirty-seven cars did show significant effects for ethanol content.
Technical Paper

1D and 3D CFD Investigation of Burning Process and Knock Occurrence in a Gasoline or CNG fuelled Two-Stroke SI Engine

2011-11-08
2011-32-0526
The paper presents a combined experimental and numerical investigation of a small unit displacement two-stroke SI engine operated with gasoline and Natural Gas (CNG). A detailed multi-cycle 3D-CFD analysis of the scavenging process is at first performed in order to accurately characterize the engine behavior in terms of scavenging patterns and efficiency. Detailed CFD analyses are used to accurately model the complex set of physical and chemical processes and to properly estimate the fluid-dynamic behavior of the engine, where boundary conditions are provided by a in-house developed 1D model of the whole engine. It is in fact widely recognized that for two-stroke crankcase scavenged, carbureted engines the scavenging patterns (fuel short-circuiting, residual gas distribution, pointwise lambda field, etc.) plays a fundamental role on both of engine performance and tailpipe emissions.
Technical Paper

1D-3D Analysis of the Scavenging and Combustion Process in a Gasoline and Natural-Gas Fuelled Two-Stroke Engine

2008-04-14
2008-01-1087
The paper presents a 1D-3D numerical model to simulate the scavenging and combustion processes in a small-size spark-ignition two-stroke engine. The engine is crankcase scavenged and can be operated with both gasoline and Natural Gas (NG). The analysis is performed with a modified version of the KIVA3V code, coupled to an in-house developed 1D model. A time-step based, two-way coupled procedure is fully described and validated against a reference test. Then, a 1D-3D simulation of the whole two-stroke engine is carried out in different operating conditions, for both gasoline and NG fuelling. Results are compared with experimental data including instantaneous pressure signals in the crankcase, in the cylinder and in the exhaust pipe. The procedure allows to characterize the scavenging process and quantify the fresh mixture short-circuiting, as well as to analyze the development of the NG combustion process for a diluted mixture, typically occurring in a two-stroke engine.
Technical Paper

2-Butanone Laminar Burning Velocities - Experimental and Kinetic Modelling Study

2015-09-01
2015-01-1956
2-Butanone (C4H8O) is a promising alternative fuel candidate as a pure as well as a blend component for substitution in standard gasoline fuels. It can be produced by the dehydrogenation of 2-butanol. To describe 2-butanone's basic combustion behaviour, it is important to investigate key physical properties such as the laminar burning velocity. The laminar burning velocity serves on the one hand side as a parameter to validate detailed chemical kinetic models. On the other hand, especially for engine simulations, various combustion models have been introduced, which rely on the laminar burning velocity as the physical quantity describing the progress of chemical reactions, diffusion, and heat conduction. Hence, well validated models for the prediction of laminar burning velocities are needed. New experimental laminar burning velocity data, acquired in a high pressure spherical combustion vessel, are presented for 1 atm and 5 bar at temperatures of 373 K and 423 K.
Technical Paper

2-Stroke CAI Operation on a Poppet Valve DI Engine Fuelled with Gasoline and its Blends with Ethanol

2013-04-08
2013-01-1674
Controlled Auto Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), is one of the most promising combustion technologies to reduce the fuel consumption and NOx emissions. Currently, CAI combustion is constrained at part load operation conditions because of misfire at low load and knocking combustion at high load, and the lack of effective means to control the combustion process. Extending its operating range including high load boundary towards full load and low load boundary towards idle in order to allow the CAI engine to meet the demand of whole vehicle driving cycles, has become one of the key issues facing the industrialisation of CAI/HCCI technology. Furthermore, this combustion mode should be compatible with different fuels, and can switch back to conventional spark ignition operation when necessary. In this paper, the CAI operation is demonstrated on a 2-stroke gasoline direct injection (GDI) engine equipped with a poppet valve train.
Technical Paper

2-step Variable Valve Actuation: System Optimization and Integration on an SI Engine

2006-04-03
2006-01-0040
2-step variable valve actuation using early-intake valve closing is a strategy for high fuel economy on spark-ignited gasoline engines. Two discrete valve-lift profiles are used with continuously variable cam phasing. 2-step VVA systems are attractive because of their low cost/benefit, relative simplicity, and ease-of-packaging on new and existing engines. A 2-step VVA system was designed and integrated on a 4-valve-per-cylinder 4.2L line-6 engine. Simulation tools were used to develop valve lift profiles for high fuel economy and low NOx emissions. The intake lift profiles had equal lift for both valves and were designed for high airflow & residual capacity in order to minimize valvetrain switching during the EPA drive cycle. It was determined that an enhanced combustion system was needed to maximize fuel economy benefit with the selected valve lift profiles. A flow-efficient chamber mask was developed to increase in-cylinder tumble motion and combustion rates.
Book

2015 Passenger Car and 2014 Concept Car Yearbook

2014-11-21
Every year global automakers introduce new or significantly re-engineered passenger vehicles with increasingly advanced technology intended to exceed consumer expectations and satisfy increasingly stringent government regulations. Some of these technologies are firsts-of-their-kind and start trends that other automakers soon follow—with the innovations becoming adopted across the board. The supply community is also increasingly playing a more significant role in helping the original equipment manufacturers research, develop, and introduce the latest engineering innovations that help bring competitive advantage for their automaker partners. Each year, the editors of SAE’s Automotive Engineering magazine publish many articles focused on the technology and engineering innovations of new passenger and concept vehicles, and these articles have been collected into this volume.
Technical Paper

21 Development of a Small Displacement Gasoline Direct Injection Engine

2002-10-29
2002-32-1790
We have developed a small-displacement gasoline direct-injection engine (1.3L). Gasoline direct-injection engines rely on ultra-lean stratified combustion to deliver significantly better fuel economy, and are already used in many practical applications. When gasoline direct-injection is applied to a small-displacement engine, however, the amount of wall wetting of fuel on the piston surface will increase because the traveled length of the fuel spray is short. This may result in problems such as smoke production, high emissions of unburned HC, and poor combustion efficiency.
Technical Paper

26 Development of “BF-Coat” for Snowmobile Piston

2002-10-29
2002-32-1795
The pistons in a snowmobile engine are subjected to severe temperature conditions not only because snowmobiles are operated in extremely cold temperatures but also because the engine has a high output per unit volume of approximately 150kW/liter. The temperature of the piston top may go from -40°C (when a cold engine is started) to 400°C or higher (when the engine is running at full load). When the piston and cylinder inner wall are cold, the performance of the lubricating oil drops; when they are hot, scuffing may be produced by problems such as tearing of the oil film between the piston and cylinder. When the engine is run at full load for a long time, moreover, the piston is subjected to prolonged high-temperature use, which is conducive to the production of piston boss hole abrasion and ring groove adhesive wear.
X