Aluminum Alloy Castings
Properties, Processes, and Applications

J. Gilbert Kaufman
Elwin L. Rooy

American Foundry Society
1695 N. Penny Lane
Schaumburg, IL 60173-4555
www.afsinc.org

ASM International®
Materials Park, OH 44073-0002
www.asminternational.org
Great care is taken in the compilation and production of this book, but it should be made clear that NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE GIVEN IN CONNECTION WITH THIS PUBLICATION. Although this information is believed to be accurate by ASM, ASM cannot guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of ASM’s control, ASM assumes no liability or obligation in connection with any use of this information. No claim of any kind, whether as to products or information in this publication, and whether or not based on negligence, shall be greater in amount than the purchase price of this product or publication in respect of which damages are claimed. THE REMEDY HEREBY PROVIDED SHALL BE THE EXCLUSIVE AND SOLE REMEDY OF BUYER, AND IN NO EVENT SHALL EITHER PARTY BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES WHETHER OR NOT CAUSED BY OR RESULTING FROM THE NEGLIGENCE OF SUCH PARTY. As with any material, evaluation of the material under end-use conditions prior to specification is essential. Therefore, specific testing under actual conditions is recommended.

Nothing contained in this book shall be construed as a grant of any right of manufacture, sale, use, or reproduction, in connection with any method, process, apparatus, product, composition, or system, whether or not covered by letters patent, copyright, or trademark, and nothing contained in this book shall be construed as a defense against any alleged infringement of letters patent, copyright, or trademark, or as a defense against liability for such infringement.

Comments, criticisms, and suggestions are invited and should be forwarded to ASM International.

ASM International staff who worked on this project include Scott Henry, Senior Manager of Product and Service Development; Charles Moosbrugger, Technical Editor; Bonnie Sanders, Manager of Production; Carol Polakowski, Production Supervisor; and Pattie Pace, Production Coordinator.

Library of Congress Cataloging-in-Publication Data

Kaufman, J. G. (John Gilbert), 1931-

TA480.A6K33 2004
620.1’86—dc22 2004052923

SAN: 204-7586

ASM International
Materials Park, OH 44073-0002
www.asminternational.org

Printed in the United States of America
Preface

This book is intended to provide a comprehensive summary of the physical and mechanical properties of most types of aluminum alloy castings. It includes discussion of the factors that affect those properties, including composition, casting process, microstructure, soundness, heat treatment, and densification. Extensive previously unpublished technical data including aging response, growth, fatigue, and high- and low-temperature performance have been consolidated with existing and updated materials property characterizations to provide a single authoritative source for most performance evaluation and design needs.

The consideration of casting process technologies is intentionally limited to typical capabilities and to their influence on property performance. Many excellent references are available for more detailed information and guidance on production methods and on important aspects of melting, melt processing, solidification, and structure control. Interested readers are referred to the publications of the American Foundry Society (AFS), the North American Die Casting Association (NADCA), and the Non-Ferrous Founders’ Society (NFFS). Many of these publications are included in the reference lists at the end of each chapter.

It is also beyond the scope of this book to provide more than generalized economics of aluminum casting production.

The authors gratefully acknowledge the support and assistance of several organizations and individuals in developing this volume. Alcoa, Inc. generously provided extensive previously unpublished production and property data from their archives, adding significantly to the industry’s shared knowledge base. We wish, especially, to thank R.R. Sawtell and R.J. Bucci of Alcoa for their cooperation in arranging the release of this material. We are pleased that the American Foundry Society has been credited as co-publisher of this book. The AFS Aluminum Division Review Committee provided substantive and constructive suggestions; the members of the committee are listed in these pages. In addition, Laura Moreno and Joseph S. Santner of AFS provided content from AFS publications and arranged for the necessary permissions to reproduce information as needed. We would also like to thank Joseph C. Benedyk of the Illinois Institute of Technology for his helpful comments, and John C. Hebeisen of Bodycote for his assistance in providing the results of recent studies in hot isostatic processing. The North American Die Casting Association and the Non-Ferrous Founders’ Society also gave us permission to cite, with appropriate references, information from their publications. We also acknowledge the support and assistance of the Aluminum Association, Inc., notably, permission to include information from their publications covering aluminum casting alloys.

J. Gilbert Kaufman
Elwin L. Rooy
About the Authors

J.G. (Gil) Kaufman has a background of almost fifty years in the aluminum and materials information industries and remains an active consultant in both areas. In 1997, he retired as vice president, technology, for the Aluminum Association, Inc., headquartered in Washington, D.C., and is currently president of his consulting company, Kaufman Associates. Earlier in his career, he spent twenty-six years with the Aluminum Company of America and five with ARCO Metals, where he was vice president, R&D. He also served as president and CEO of the National Materials Property Data Network, establishing a worldwide online network of more than twenty-five materials databases. Mr. Kaufman is a Fellow and Honorary Member of ASTM, and a Fellow and Life Member of ASM International. He has published more than 125 articles, including four books, on aluminum alloys and materials data systems.

Elwin Rooy retired after thirty-five years with the Aluminum Company of America, where he was corporate manager of metallurgy and quality assurance, to form a consulting firm specializing in aluminum process and product technologies, quality systems, and industry relations. He has been active in committees of the Aluminum Association, American Foundry Society, American Die Casting Institute, The Institute of Scrap Recycling Industries, Society of Die Casting Engineers, ASM International, and TMS. He has served as chairman of the TMS Aluminum Committee, chairman of the AFS Light and Reactive Metals Division, director and chairman of the Northeast Ohio chapter of AFS, regional director of the Foundry Education Foundation, and charter member of the Drexel/WPI Advanced Casting Research Laboratory. Mr. Rooy’s honors include the AFS award for Scientific Merit, The TMS/AIME Distinguished Service Award, the M.C. Flemings Award for contributions in the field of solidification, and the Arthur Vining Davis Award for technical achievement. He has served on the editorial boards of the Journal of Metals and Advanced Materials & Processes, published more than thirty articles and papers, edited Light Metals 1991, and authored or coauthored articles in the ASM Handbook series.
American Foundry Society Aluminum Division Review Committee

James Boileau
Ford Motor Company

Paul Crepeau
General Motors Corporation

Yemi Fasoyinu
Canada Centre for Mineral and Energy Technology

Jerry Gegel
Material & Process Consultancy

David Jakstis
Boeing Commercial Airplanes Group

John Miller
JMA Services

Paul Niskanen
Alion Science and Technology

Randy Oehrlein
Carley Foundry Inc.

Tom Prucha
INTERNET Corporation

Steve Robison
American Foundry Society

Joe Santner
American Foundry Society

Al Torok
Kaiser Aluminum & Chemical Corporation

Jim Van Wert
Amcast Industrial Corporation

Dave Weiss
Eck Industries Inc.

Jacob Zindel
Ford Motor Company
Contents

Chapter 1: Introduction ... 1
 1.1 Background and Scope .. 1
 1.2 History ... 1
 1.3 Advantages and Limitations of Aluminum Castings 2
 1.4 Major Trends Influencing Increased Use of Aluminum Castings ... 3
 1.4.1 Technology ... 3
 1.4.2 Recycling .. 5
 1.5 Selecting the Right Aluminum Alloy and Casting Process 5

Chapter 2: Aluminum Casting Alloys .. 7
 2.1 General ... 7
 2.2 Specifications ... 7
 2.3 Alloy Designations ... 8
 2.3.1 The Aluminum Association (AA) Casting Alloy Designation System .. 8
 2.3.2 Aluminum Association Casting Temper Designation System ... 8
 2.3.3 Evolution of Designation System; Cross-Reference to Older Designations 9
 2.3.4 The UNS Alloy Designation System ... 9
 2.3.5 International Casting Alloy Designations .. 9
 2.3.6 Nomenclature System for Aluminum Metal-Matrix Composites ... 9
 2.4 Composition Groupings ... 13
 2.4.1 Aluminum-Copper ... 13
 2.4.2 Aluminum-Silicon-Copper .. 13
 2.4.3 Aluminum-Silicon .. 13
 2.4.4 Aluminum-Silicon-Magnesium 14
 2.4.5 Aluminum-Magnesium .. 14
 2.4.6 Aluminum-Zinc-Magnesium .. 14
 2.4.7 Aluminum-Tin ... 14
 2.5 Effects of Alloying Elements ... 14
 2.5.1 Antimony .. 14
 2.5.2 Beryllium .. 15
 2.5.3 Bismuth ... 15
 2.5.4 Boron .. 15
 2.5.5 Cadmium ... 15
 2.5.6 Calcium ... 15
 2.5.7 Chromium .. 15
 2.5.8 Copper .. 15
 2.5.9 Iron ... 15
 2.5.10 Lead .. 15
 2.5.11 Magnesium ... 15
 2.5.12 Manganese ... 15
 2.5.13 Mercury ... 16
 2.5.14 Nickel .. 16
 2.5.15 Phosphorus ... 16
 2.5.16 Silicon .. 16
 2.5.17 Silver .. 16
 2.5.18 Sodium .. 16
 2.5.19 Strontium ... 16
 2.5.20 Tin ... 16
 2.5.21 Titanium ... 16
 2.5.22 Zinc .. 17
 2.6 Alloy Groupings by Application or Major Characteristic 17
 2.6.1 General-Purpose Alloys ... 17
 2.6.2 Elevated-Temperature Alloys 19
 2.6.3 Wear-Resistant Alloys .. 19
 2.6.4 Moderate-Strength Alloys with Low Residual Stresses .. 19
 2.6.5 Bearings .. 20
 2.6.6 High-Strength Alloys ... 20

Chapter 3: Aluminum Casting Processes 21
 3.1 History .. 21
 3.2 Casting Process Selection .. 21
 3.2.1 Casting Design .. 21
 3.2.2 Specification Requirements .. 21
 3.2.3 Volume of Production .. 22
 3.2.4 Costs .. 22
 3.2.5 Quality .. 22
 3.3 Casting Process Technology .. 22
 3.3.1 Expendable and Nonexpendable Mold Processes 22
 3.3.2 Pressure versus Gravity ... 22
 3.3.3 Gating and Risering .. 22
 3.4 Expendable Mold Gravity-Feed Casting Process and Its Variations .. 23
 3.4.1 Sand Casting ... 23
 3.4.2 Evaporative (Lost-Foam) Pattern Casting (EPC) 24
 3.4.3 Shell Mold Casting ... 25
 3.4.4 Plastic Casting ... 25
 3.4.5 Investment Casting ... 25
 3.4.6 Vacuum Mold (V-Mold) Casting 26
 3.5 Nonexpendable (Permanent) Mold Gravity Feed Casting Process and Its Variations 26
 3.5.1 Permanent Mold Casting .. 26
 3.5.2 Low-Pressure Die Casting (LP), Pressure Riserless Casting (PRC) .. 27
 3.5.3 Vacuum Riserless Die Casting (VRC) 28
 3.5.4 Centrifugal Casting ... 28
 3.5.5 Squeeze Casting .. 29
 3.5.6 Semisolid Forming .. 29
 3.6 Pressure Die Casting and Its Variations 29
 3.6.1 Acurad Die Casting Process .. 31
 3.6.2 High-Integrity Pressure Die Casting 31
 3.6.3 Hot-Press Pressure Die Casting 31
 3.6.4 Vacuum Die Casting ... 31
 3.6.5 ROTAR Casting .. 31
 3.7 Premium Engineered Castings .. 31
 3.7.1 Melt Processing ... 32
 3.7.2 Melt Quality Assessment ... 32
 3.7.3 Solidification .. 32
 3.7.4 Solidification Rate ... 32
 3.7.5 Mold Materials .. 32
Contents

For a more detailed Table of Contents, see page vii.

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Aluminum Casting Alloys</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Aluminum Casting Processes</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>The Effects of Microstructure on Properties</td>
<td>39</td>
</tr>
<tr>
<td>5</td>
<td>The Influence and Control of Porosity and Inclusions in Aluminum Castings</td>
<td>47</td>
</tr>
<tr>
<td>6</td>
<td>Hot Isostatic Pressing</td>
<td>55</td>
</tr>
<tr>
<td>7</td>
<td>Heat Treatment of Aluminum Castings</td>
<td>61</td>
</tr>
<tr>
<td>8</td>
<td>Properties and Performance of Aluminum Castings</td>
<td>69</td>
</tr>
</tbody>
</table>

Property Data Sets

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aging Response Curves</td>
<td>133</td>
</tr>
<tr>
<td>2</td>
<td>Growth Curves</td>
<td>175</td>
</tr>
<tr>
<td>3</td>
<td>Stress-Strain Curves</td>
<td>193</td>
</tr>
<tr>
<td>4</td>
<td>Tensile Properties at High and Low Temperatures and at Room Temperature after High-Temperature Exposure</td>
<td>211</td>
</tr>
<tr>
<td>5</td>
<td>Creep Rupture Properties</td>
<td>243</td>
</tr>
<tr>
<td>6</td>
<td>Rotating-Beam Reversed-Bending Fatigue Curves</td>
<td>253</td>
</tr>
</tbody>
</table>

Appendixes

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Glossary of Terms</td>
<td>293</td>
</tr>
<tr>
<td>2</td>
<td>Abbreviations and Symbols</td>
<td>299</td>
</tr>
<tr>
<td>3</td>
<td>Test Specimen Drawings</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>Alloy Index</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td>Subject Index</td>
<td>325</td>
</tr>
</tbody>
</table>