How to Organize and Run a Failure Investigation

Daniel P. Dennies, Ph.D., P.E.

Great care is taken in the compilation and production of this volume, but it should be made clear that NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE GIVEN IN CONNECTION WITH THIS PUBLICATION. Although this information is believed to be accurate by ASM, ASM cannot guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of ASM’s control, ASM assumes no liability or obligation in connection with any use of this information. No claim of any kind, whether as to products or information in this publication, and whether or not based on negligence, shall be greater in amount than the purchase price of this product or publication in respect of which damages are claimed. THE REMEDY HEREBY PROVIDED SHALL BE THE EXCLUSIVE AND SOLE REMEDY OF BUYER, AND IN NO EVENT SHALL EITHER PARTY BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES WHETHER OR NOT CAUSED BY OR RESULTING FROM THE NEGLIGENCE OF SUCH PARTY. As with any material, evaluation of the material under end-use conditions prior to specification is essential. Therefore, specific testing under actual conditions is recommended.

Nothing contained in this book shall be construed as a grant of any right of manufacture, sale, use, or reproduction, in connection with any method, process, apparatus, product, composition, or system, whether or not covered by letters patent, copyright, or trademark, and nothing contained in this book shall be construed as a defense against any alleged infringement of letters patent, copyright, or trademark, or as a defense against liability for such infringement.

Comments, criticisms, and suggestions are invited, and should be forwarded to ASM International.

ASM International staff who worked on this project include Scott Henry, Senior Manager of Product and Service Development; Bonnie Sanders, Manager of Production; and Madrid Tramble, Senior Production Coordinator.

Library of Congress Cataloging-in-Publication Data
Dennies, Daniel P.
How to organize and run a failure investigation / Daniel P. Dennies.
p. cm.
Includes bibliographical references and index.
1. Structural failures—Investigation. I. Title
TA656.D46 2005
624.1’71—dc22 2005045226

SAN: 204-7586

ASM International®
Materials Park, OH 44073-0002
www.asminternational.org

Printed in the United States of America
Contents

Preface ...v
About the Author ...vii

CHAPTER 1 What Is a Failure? ...1

Challenges Faced by Failure Analysts ...2
The Failure Analysis Process ...3
Recognizing a Failure ..7
Case History: BOAC Comet Crashes, Mediterranean Island
 of Elba and Stromboli (1957) ..20
Case History Discussion ...26

CHAPTER 2 Failures Come in all Shapes and Sizes29

Some Failures You Can Touch, and Some You Cannot30
What Defines a Failure? ...34
Why Do Failures Happen? ...36
Case History: Tacoma Narrows Bridge Collapse, Washington
 State (1940) ..53
Case History Discussion ...59

CHAPTER 3 Aspects of a Failure Investigation61

Relevant Statistics ...61
Creating a Database ..63
Why Is a Failure Investigation Performed? ..67
Why Determine Root Cause? ..68
When Is a Failure Investigation Performed? ..69
Benefits of a Failure Investigation ...71
Puzzles and Problem Solving ...71
The Four-Step Problem-Solving Process ...76
Why Plan a Failure Investigation? ..77
Timeline of a Failure Analysis ...78
Preface

This book presents a proven systematic approach and template to advance a failure investigation, including a discussion of the methodology required, organizational tools, and a review of failure investigation concepts. This book provides a learning platform for personnel from all disciplines: materials, design, manufacturing, quality, and management. Guidance is provided in areas such as learning how to define objectives, negotiating the scope of an investigation, examining the physical evidence, and applying general problem-solving techniques.

The systematic approach explained herein examines the relationship between various failure sources (e.g., corrosion) and the organization and conduct of the failure investigation. The examples provided focus on the definition of and requirements for a professionally performed failure analysis of a physical object or structure. However, many of the concepts learned have broader applicability in other areas of business, manufacturing, and life in general.

Professional failure analysis is a multilevel process that includes the metallurgical analysis of the physical part itself, and also much more. This book is intended to showcase some of the latest thinking on how the different “layers” of a failure investigation process should work together leading to a concise, well-supported and well-documented root cause, resulting in corrective action when the investigation is complete.

Failure investigations cross company functional boundaries and are an integral component of any design or manufacturing business operation. Learning the proper steps to organize and professionally conduct investigations is essential for solving manufacturing problems and assisting with redesigns. Examples of how competent materials engineers can use these concepts in a failure investigation are emphasized here.

After completing this book, readers shall have the mindset that a well-organized failure investigation is the proper method and will take action to apply the concepts learned. At first, it may be difficult for your customers to appreciate the time and effort it takes to conduct a successful failure
investigation. Perhaps they want you to conduct their investigation a specific way and according to their preferences. They may already have a “silver bullet theory” they just want you to confirm. Remember, Rome was not built in a day. You will not convince anybody in five seconds; it takes time. Once your customers see how well the methods presented in this book work and how convincingly the evidence leads to the root cause and corrective actions, they will come around. Readers shall come to appreciate that a few hours spent in preparation may save a lot of time and money and may even be the key to achieving a successful conclusion to the failure investigation.

ACKNOWLEDGMENTS

I would like to thank the staff at ASM International for their assistance in the completion of this book—in particular, Sarah Fanger, who prompted me to develop the original course, Julie Lorence, whose assistance expanded the course and initiated the book, and Scott Henry, who made the book a reality. I would also like to thank the members of ASM International Failure Analysis Committee, whose members participated in many conversations and stories that fostered the development of the ASM International course and this book. Lastly, the creation of this book would not have been possible without the love and support of my friends and family, especially my parents, Paul and Lillian Dennies.

Daniel P. Dennies, Ph.D., P.E.
Foothill Ranch, California
February 2, 2005
About the Author

Dr. Daniel P. Dennies, FASM, is an Associate Technical Fellow for the Boeing Company and has 26 years of experience as a metallurgist. The majority of his career has been in the U.S. space and aerospace industries working on projects such as the Space Shuttle Main Engine, the National Launch System, the National Aerospace Plane, expendable launch systems like Delta and Titan, and most recently, the International Space Station and Space Shuttle programs. He is an expert in failure analysis and also works as an expert witness. Dr. Dennies is a recipient of the coveted NASA Silver Snoopy Award.

A member of ASM for 28 years, Dr. Dennies was named a Fellow of ASM in 2002. He has held positions on local as well as national committees. He has served as chair of the ASM Chapter Council and has participated as a “Materials Mentor” at Materials Camps sponsored by the ASM Materials Education Foundation since the program began in 2000. Dr. Dennies is currently serving on the Foundation’s Board of Trustees. He is also a contributing editor to ASM’s Journal of Failure Analysis and Prevention and teaches the ASM course, “How to Organize and Run a Failure Investigation.” Dr. Dennies received the 2002 ASM Materials Engineering Institute Instructor of Merit Award and the 2004 ASM International Allan Ray Putnam Service Award.

Dr. Dennies has a bachelor’s degree in metallurgical engineering from California Polytechnic Institute, San Luis Obispo, a master’s degree in materials engineering from the University of Southern California, an MBA from Pepperdine University, and a Ph.D. in material science and engineering from University of California, Davis.