SURFACE ENGINEERING
FOR CORROSION AND WEAR RESISTANCE

Edited by

J.R. Davis
Davis & Associates
Great care is taken in the compilation and production of this Volume, but it should be made clear that NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE GIVEN IN CONNECTION WITH THIS PUBLICATION. Although this information is believed to be accurate by ASM, ASM cannot guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of ASM's control, ASM assumes no liability or obligation in connection with any use of this information. No claim of any kind, whether as to products or information in this publication, and whether or not based on negligence, shall be greater in amount than the purchase price of this product or publication in respect of which damages are claimed. THE REMEDY HEREBY PROVIDED SHALL BE THE EXCLUSIVE AND SOLE REMEDY OF BUYER, AND IN NO EVENT SHALL EITHER PARTY BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES WHETHER OR NOT CAUSED BY OR RESULTING FROM THE NEGLIGENCE OF SUCH PARTY. As with any material, evaluation of the material under end-use conditions prior to specification is essential. Therefore, specific testing under actual conditions is recommended.

Nothing contained in this book shall be construed as a grant of any right of manufacture, sale, use, or reproduction, in connection with any method, process, apparatus, product, composition, or system, whether or not covered by letters patent, copyright, or trademark, and nothing contained in this book shall be construed as a defense against any alleged infringement of letters patent, copyright, or trademark, or as a defense against liability for such infringement.

Comments, criticisms, and suggestions are invited, and should be forwarded to ASM International.

ASM International staff who worked on this project include Scott Henry, Assistant Director of Reference Publications; Bonnie Sanders, Manager of Production; Nancy Hrivnak, Copy Editor; and Kathy Dragolich, Production Supervisor.

Library of Congress Cataloging-in-Publication Data
Surface engineering for corrosion and wear resistance / edited by J.R. Davis
p. cm. Includes index.
3. Surfaces (Technology) I. Davis, J.R. (Joseph R.)
TA462.S789 2001 620.1’1233—dc21 00-048537
ISBN: 0-87170-700-4

ASM International®
Materials Park, OH 44073-0002
www.asminternational.org

Printed in the United States of America
Contents

Preface ... vii

CHAPTER 1: Introduction to Surface Engineering for Corrosion and Wear Resistance 1
Surface Engineering to Combat Corrosion and Wear 3

CHAPTER 2: Principles of Corrosion 11
Electrochemical Corrosion Basics 11
Corrosive Conditions ... 13
Forms of Corrosion ... 15
Uniform Corrosion ... 15
Galvanic Corrosion .. 16
Pitting ... 19
Crevice Corrosion .. 21
Erosion-Corrosion .. 22
Cavitation .. 23
Fretting Corrosion .. 24
Intergranular Corrosion .. 25
Exfoliation ... 26
Dealloying Corrosion .. 26
Stress-Corrosion Cracking 27
Corrosion Fatigue ... 29
Hydrogen Damage ... 30
Coatings and Corrosion Prevention 31
Corrosion Testing ... 35
Field Tests ... 36
Simulated Service Tests 36
Salt Spray Tests ... 38
Humidity Cabinet Tests 39
Electrochemical Tests ... 39
CHAPTER 3: Principles of Friction and Wear

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friction</td>
<td>43</td>
</tr>
<tr>
<td>Wear</td>
<td>54</td>
</tr>
<tr>
<td>Classification of Wear</td>
<td>54</td>
</tr>
<tr>
<td>Abrasive Wear</td>
<td>56</td>
</tr>
<tr>
<td>Solid Particle Erosion</td>
<td>61</td>
</tr>
<tr>
<td>Liquid Erosion</td>
<td>68</td>
</tr>
<tr>
<td>Slurry Erosion</td>
<td>69</td>
</tr>
<tr>
<td>Adhesive Wear</td>
<td>72</td>
</tr>
<tr>
<td>Galling</td>
<td>75</td>
</tr>
<tr>
<td>Fretting</td>
<td>76</td>
</tr>
<tr>
<td>Rolling-Contact Wear</td>
<td>77</td>
</tr>
<tr>
<td>Lubrication</td>
<td>77</td>
</tr>
<tr>
<td>Modes of Lubrication</td>
<td>78</td>
</tr>
<tr>
<td>Lubricants</td>
<td>78</td>
</tr>
<tr>
<td>Wear Testing</td>
<td>81</td>
</tr>
<tr>
<td>Test Methods</td>
<td>81</td>
</tr>
</tbody>
</table>

CHAPTER 4: Surface Engineering to Change the Surface

Metallurgy

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selective Surface Hardening</td>
<td>87</td>
</tr>
<tr>
<td>Flame Hardening</td>
<td>87</td>
</tr>
<tr>
<td>Induction Hardening</td>
<td>88</td>
</tr>
<tr>
<td>High-Energy Beam Hardening</td>
<td>90</td>
</tr>
<tr>
<td>Laser Melting</td>
<td>91</td>
</tr>
<tr>
<td>Shot Peening</td>
<td>93</td>
</tr>
</tbody>
</table>

CHAPTER 5: Surface Engineering to Change the Surface

Chemistry

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphate Chemical Conversion Coatings</td>
<td>95</td>
</tr>
<tr>
<td>Types of Phosphate Coatings</td>
<td>96</td>
</tr>
<tr>
<td>Applications</td>
<td>98</td>
</tr>
<tr>
<td>Chromate Chemical Conversion Coatings</td>
<td>100</td>
</tr>
<tr>
<td>Aluminum Anodizing</td>
<td>102</td>
</tr>
<tr>
<td>Chromic Anodizing</td>
<td>102</td>
</tr>
<tr>
<td>Sulfuric Anodizing</td>
<td>103</td>
</tr>
<tr>
<td>Hardcoat Anodizing</td>
<td>104</td>
</tr>
<tr>
<td>Sealing of Anodized Coatings</td>
<td>105</td>
</tr>
<tr>
<td>Corrosion Resistance of Anodized Aluminum</td>
<td>106</td>
</tr>
<tr>
<td>Oxidation Treatments</td>
<td>108</td>
</tr>
<tr>
<td>Diffusion Heat Treatment Coatings</td>
<td>110</td>
</tr>
<tr>
<td>Carburizing</td>
<td>112</td>
</tr>
<tr>
<td>Nitriding</td>
<td>113</td>
</tr>
<tr>
<td>Carbonitriding and Ferritic Nitrocarburizing</td>
<td>115</td>
</tr>
</tbody>
</table>
CHAPTER 6: Surface Engineering to Add a Surface Layer or Coating

- Organic Coatings 127
- Paints .. 128
- Ceramic Coatings and Linings 132
 - Glass Linings 132
 - Porcelain Enamels 133
 - Concrete and Cementitious Coatings and Linings 134
- High-Performance Ceramic Coatings and Linings 136
- Hot Dip Coatings 138
- Batch and Continuous Processing 138
- Coating Microstructure 138
- Galvanized Coatings 139
- Galvanneal Coatings 142
- Zinc-Aluminum Coatings 142
- Aluminum Coatings 143
- Terne Coatings 144
- Electrochemical Deposition 145
 - Aqueous Solution Electroplating 145
 - Continuous Electrodeposition 147
 - Fused-Salt Electroplating 148
 - Precious Metal Plating 149
 - Electroless Plating 150
- Composite Coatings 151
- Weld-Overlay Coatings 153
- Thermal Spray Coatings 160
- Cladding 166
 - Corrosion Control through Cladding 166
- Chemical Vapor Deposition 168
- Physical Vapor Deposition Processes 172
- Thermoreactive Deposition/Diffusion Process 176

CHAPTER 7: Process Comparisons

- Process Availability 184
- Corrosion Resistance 185
- Wear Resistance 186
- Cost of Surface Treatments 190
- Distortion or Size Change Tendencies 191
- Coating Thickness Attainable 192
CHAPTER 8: Practical Design Guidelines for Surface Engineering

Surface-Engineering Solutions for Specific Problems ... 196
Structural Parts in Corrosive Environments .. 197
 Base Material ... 197
 Neutral Environments .. 197
 Specific Corrosive Environments .. 197
Parts in Static Contact with Vibration (Fretting) .. 199
 Base Material ... 199
 Contact Conditions ... 199
 Fretting Fatigue .. 200
 Oxidative Wear ... 200
Parts in Static Contact with a Product .. 200
 Base Material ... 200
 Specific Applications .. 201
Parts in Sliding or Rolling Contact with Another Surface 201
 Base Material ... 202
 General Contact Conditions .. 202
 Surface-Engineering Options ... 203
 Specific Contact Conditions .. 205
Parts in Low-Load Sliding Contact with an Abrasive Product 206
 Base Material ... 206
 Specific Applications .. 207
Parts in High-Load Sliding or Erosion with an Abrasive Product 208
 Base Material ... 208
 Surface-Engineering Options ... 208
Parts in Contact with Another Engineering Component in the Presence of an Abrasive and Corrosion Product or Environment .. 208
 Base Material ... 208
 Surface-Engineering Options ... 209
Preprocessing and Postprocessing Heat Treatment ... 209
Coating Thickness, Case Depth, and Component Distortion 210
Surface Roughness and Finishing ... 213
General Design Principles Related to Surface Engineering 213
Design Guidelines for Surface Preparation Processes 218
Design Guidelines for Organic Coating Processes 219
Design Guidelines for Inorganic Coating Processes 222
Other Important Considerations for the Design Engineer 226

Glossary .. 231
Index .. 257
Preface

Corrosion, wear, or the combined effects of these destructive failure modes cost industrial economies hundreds of billions of dollars each year. One of the more effective means of mitigating damage due to corrosion and wear is to treat, or “engineer,” the surface so that it can perform functions that are distinct from those functions required from the bulk of the material. For example, a gear must be tough and fatigue resistant yet have a surface that resists wear. For applications requiring only a moderate degree of impact strength, fatigue resistance, and wear resistance, a higher carbon through-hardening steel may be sufficient. For more severe conditions, however, a surface hardened steel may have to be used. What are the options? Should the gear be flame or induction hardened, carburized or nitrided, or would high-energy processes such as laser- or electron-beam hardening be more appropriate? As a second example, consider the use of steels for various outdoor structural applications. Steel is popular because it is inexpensive, strong, and easily fabricated. Unfortunately steel is highly susceptible to severe corrosion in many environments and must be coated to achieve a satisfactory service life. Once again there are a variety of options. Should the component be painted, hot dip galvanized or aluminized, electroplated, thermally sprayed, or clad with a more corrosion resistant material? For large steel components, such as bridge members, size, weight, and handling problems may limit the type of surface treatment considered. Finally, take into consideration parts that require wear-resistant, thin-film coatings. Can more conventional chromium or hard nickel electroplating be used, or will harder coatings deposited by vapor deposition techniques or ion implantation be required? Will processing time or temperature be a factor in coating selection?

From the above discussion, it is apparent that engineers are faced with a bewildering number of choices when selecting the appropriate surface engineering treatment for a specific corrosion and/or wear application. But where does one start? Where can a design engineer find practical guidelines to aid in the selection process? The answers to these questions
lie within *Surface Engineering for Corrosion and Wear Resistance*. In addition to devoting an entire chapter to process comparisons (see Chapter 7), this book contains dozens of useful tables and figures that compare surface treatment thickness and hardness ranges; abrasion and corrosion resistance; processing time, temperature, and pressure; costs; distortion tendencies; and other surface treatment characteristics that must be considered when choosing the right coating for the job.

The starting point for this publication was an excellent overview published by the Institute of Materials (IOM) entitled “Surface Engineering to Combat Wear and Corrosion: A Design Guide,” which was written by Keith Stevens (A.T. Poeton Ltd.). Assisting IOM in the project was AEA Technology plc. and their National Centre of Tribology located in Risley, United Kingdom. The IOM booklet presents a concise methodology for understanding corrosion and wear problems and the many factors that must be considered before selecting a surface treatment. Material from the IOM design guide can be found primarily in Chapter 7, “Process Comparisons,” and Chapter 8, “Practical Design Guidelines for Surface Engineering.” Special thanks are due to Stephen Harmer, the editor of the IOM “Design Guide” series, who also reviewed several key chapters, and Bill Jackson, Head of Publishing for IOM, who worked out the copublishing agreement with Scott Henry, Assistant Director of Reference Publications for ASM International.

Joseph R. Davis
Davis & Associates
Chagrin Falls, Ohio