Safety and Reliability in Cooperating Unmanned Aerial Systems
Preface

The vision is clear: several unmanned aerial vehicles collaborate and coordinate their flight and actions to achieve a mission, while human operators, barely involved, monitor the progress of the vehicles. This vision is not yet a reality. Before multiple unmanned aerial vehicles are deployed in a coordinated fashion, novel systems must be devised. Among those, systems that ensure safe and reliable operations. Currently, a great many researchers are deploying every effort to design more effective multi-vehicle control concepts and algorithms. Furthermore, there exists a vast body of knowledge in fault-tolerant control, and in fault detection and fault recovery techniques for the individual aerial platform. Yet, very little has been said to date about how to perform reliable and safe autonomous multi-vehicle operations. Indeed, ensuring mission success despite off-nominal, or degraded, operations of mission-critical vehicle components is an open problem which has drawn attention only recently. Despite fault-tolerant control software and hardware embedded onboard air vehicles, overall fleet performance may still be degraded after the occurrence of anomalous events, such as systems malfunctions, damage and failures. As far as we are aware, this book is the first of its kind in presenting a set of basic principles and algorithms for the analysis and design of health management systems for cooperating unmanned aerial vehicles. Such systems rely upon monitoring and fault adaptation schemes. Cooperative health management systems seek to provide adaptation to the presence of faults, from a team perspective, by capitalizing on the availability of interconnected computing, sensing, and actuation resources. There is currently little literature on the safety and reliability for cooperating unmanned aerial systems, although the topic of cooperation for effective fleet monitoring and fault-adaptation purposes is emerging.
This monograph is the culmination of several years of research, and as such is biased with previous results obtained by the authors. We have our own view on the problem of health management, and have addressed a limited number of scenarios. This monograph presents the concepts in the form of theorems, lemmas, propositions, and step-by-step procedures. The health management concepts are illustrated by means of simple examples and numerical simulations of practical UAS operations. Cases of tight formation control and coordinated rendezvous for a network of formations are addressed in this book. Therefore, researchers, academics, graduate students and aerospace engineers, we hope, will appreciate the content.

We wish to thank Defence R&D Canada, and in particular Dr. Alexandre Jouan for his support of this initiative. The first author acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC). The second author gratefully acknowledges the support of NSERC and the Department of National Defence of Canada in the form of a Visiting Fellowship. We would like to thank Quanser Inc. for providing experimental data to support the modeling of the ALTAV, in particular Drs Jacob Aplarian and Ernest Earon who have shown constant support of our ideas. We have indeed learned quite a lot from their vast knowledge of real-time control systems. We also had the pleasure of collaborating with several academic researchers in the areas of unmanned systems control and fault tolerance. In particular, we would like to thank Professor Youmin Zhang of Concordia University for the many discussions we had on the area of individual vehicle fault-tolerant control, thus improving our understanding of the issues and challenges in such field. We would like to thank Dr. Antonios Tsourdos and his team at Cranfield University (UK). We have had the honor of collaborating with Antonios for several years, which helped us learn more effective techniques of cooperative control, path planning, and guidance. The generous advices of Mr. Jean Bélanger, Dr. Dany Dionne and Professor Pierre Sicard of University of Québec at Trois-Rivières are also gratefully acknowledged. This book was written over a period of one year after working hours and during weekends. Hence, we would like to express our most sincere gratitude and warmful thanks to our families and friends for their support during this intense period of our lives.

C.A. Rabbath and N. Léchevin
Contents

Preface

1. Introduction
 1.1 Unmanned Aerial Systems
 1.2 Cooperative Control
 1.3 Contingencies
 1.3.1 Faults and failures of UAV components
 1.3.2 Vehicle damage
 1.3.3 Information flow faults
 1.3.4 Team anomalies and collisions
 1.3.5 Environmental effects
 1.3.6 Book overview

2. Health Management for the Individual Vehicle: A Review
 2.1 Passive and Active Fault-Tolerant Control Systems
 2.2 Fault/Failure Detection and Diagnosis
 2.3 Control Reconfiguration
 2.4 FTC and FDD Techniques for MAV and SUAV

3. Health Monitoring and Adaptation for UAS Formations
 3.1 Models of Vehicle Dynamics, Flight Control, and Faults
 3.1.1 ALTAV dynamics and control
 3.1.2 Quadrotor dynamics and control
 3.1.3 Actuator faults
 3.2 Formation Control
 3.2.1 Elements of contraction theory
3.2.2 Simplified modeling for the purpose of formation control synthesis 37
3.2.3 Formation control objective .. 42
3.2.4 Closed-loop representation of the formation .. 43
3.2.5 Convergence analysis of state trajectories 48
3.2.6 Modeling a formation of UAVs with realistic nonlinear dynamics 57
3.2.7 Trajectory of the leader and obstacle/threat avoidance 58
3.2.8 Formation control design algorithm ... 60
3.3 Observer-Based Decentralized Abrupt Fault Detector ... 61
3.3.1 Context .. 61
3.3.2 Simplified model of vehicle closed-loop dynamics 62
3.3.3 Concept of observer with disturbance attenuation 65
3.3.4 Synthesis of DAFD .. 69
3.3.5 Threshold selection .. 77
3.3.6 DAFD design algorithm ... 79
3.4 Signal-Based Decentralized Non-Abrupt Fault Detector .. 80
3.4.1 Context .. 80
3.4.2 Networked information and coupling effects 81
3.4.3 Estimator of heading angle .. 85
3.4.4 Statistical test for DNaFD .. 86
3.4.5 DNaFD design algorithm .. 89
3.5 UAV Command Adaptation .. 90
3.6 Simulations and Experiments .. 93
3.6.1 Formation control of unicycles .. 94
3.6.2 Formation control of quadrotor aircraft 102
3.6.3 DAFD and formation control of ALTAVs 104
3.6.4 DAFD and quadrotor formation control 112
3.6.5 DNaFD and formation control of ALTAVs 115
3.6.6 Decentralized fault detection for mixed-type, concurrent actuator faults 123
3.6.7 DAFD/DNaFD in closed loop with individual vehicle FDD system 126
3.6.8 A note on the digital implementation ... 129

4. Decision Making and Health Management for Cooperating UAS 131
4.1 Coordinated Rendezvous of UAS Formations ... 134
Contents

4.1.1 Context ... 134
4.1.2 Related work 137
4.1.3 Multi-formations 138
4.1.4 Models ... 140
4.1.5 UAS-threat encounters modeled as Markov
decision processes 152
4.1.6 Problem formulation 156
4.1.7 Decision policies: perfect information 160
4.1.8 Decision policies: partially known environment ... 164
4.1.9 Design of CHM and decision making system 173
4.2 Cooperation Despite Information Flow Faults 174
4.2.1 Context ... 174
4.2.2 Impact of information flow fault on UAS decision
policies ... 175
4.2.3 Health state estimation 177
4.2.4 Distributed computations of $W'_{k,P_i,\gamma_k,\nu_j}$ 182
4.3 Numerical Simulations 184
4.3.1 Single target area and perfectly known
environment ... 184
4.3.2 Sequence of targets and perfect knowledge of
environment ... 191
4.3.3 The case of perturbed MDPs 193
4.3.4 Successive zones of surveillance in partially known
environment ... 197
4.3.5 Information flow faults 199
4.4 Distributed and Parallel Implementation of Optimization
Algorithms .. 200
4.4.1 Context ... 200
4.4.2 Architecture 201
4.4.3 Distributed and parallel simulation environment 202
4.4.4 Experiments 204

Bibliography .. 207

Index .. 221