College of Engineering
Center for Environmental Research and Technology
University of California
Riverside, California

Hydrogen Fuel
for Surface Transportation

Joseph M. Norbeck
James W. Heffel
Thomas D. Durbin
Bassam Tabbara
John M. Bowden
Michelle C. Montano

Published by:
Society of Automotive Engineers, Inc.
400 Commonwealth Drive
Warrendale, PA 15096-0001
U.S.A.
Phone: (412) 776-4841
Fax: (412) 776-5760
Hydrogen fuel for surface transportation / Joseph M. Norbeck... [et al.]

p. cm.
Includes bibliographical references and index.
I. Norbeck, Joseph M., 1943- .
TL229.H9H94 1996
629.25'38--dc20
96-38602
CIP

Copyright © 1996 Society of Automotive Engineers, Inc.

All rights reserved. Printed in the United States of America.

Permission to photocopy for internal or personal use, or the internal or personal use of specific clients, is granted by SAE for libraries and other users registered with the Copyright Clearance Center (CCC), provided that the base fee of $0.50 per page is paid directly to CCC, 222 Rosewood Dr., Danvers, MA 01923. Special requests should be addressed to the SAE Publications Group.
1-56091-684-2/96 $.50

SAE Order No. R-160
Dedication

To Dr. Robert M. Zweig, whose longstanding commitment to the advancement of hydrogen as a clean fuel has been a source of inspiration to many
Contents

Preface ... ix

Chapter 1: Introduction ... 1

 References .. 3

Chapter 2: Hydrogen Engines and Vehicles: Characteristics and Development ... 5

 2.1 Introduction .. 5
 2.2 General Properties of Hydrogen as a Fuel 6
 2.3 Special Characteristics of a Hydrogen Engine 8
 2.4 On-Board Storage Systems 16
 2.5 Conclusion ... 22

 References .. 22

Reprints:

 - Fuel Induction Techniques for a Hydrogen Operated Engine
 L.M. Das .. 27
 - Trend of Social Requirements and Technological Development of Hydrogen-Fueled Automobiles
 S. Furuhama .. 37
 - Hythane-An Ultraclean Transportation Fuel
 V. Raman, J. Hansel, J. Fulton, F. Lynch, D. Bruderly 47
 - Germany's Contribution to the Demonstrated Technical Feasibility of the Liquid Hydrogen Fueled Passenger Automobile
 W. Peschka, W.J.D. Escher ... 57

Chapter 3: Fuel Cells ... 75

 3.1 Introduction .. 75
 3.2 What is a Fuel Cell? ... 76
 3.3 Theoretical Background for Fuel Cells 77
 3.4 Types of Fuel Cells ... 78
 3.5 Principles of Low Temperature Alkaline Fuel Cells 79
 3.6 The Solid Polymer Fuel Cell or Proton Exchange Membrane Fuel Cell .. 80
 3.7 High Temperature Fuel Cells 83
 3.8 Developing Fuel Cells for Vehicular Applications 85
 3.9 Systems Engineering Aspects 87
 3.10 Recent Developments with Fuel Cells....................... 89
 3.11 Conclusion ... 91

 References .. 91

Reprints:

 - Hydrogen-Air Fuel Cells of the Alkaline Matrix Type: Manufacture and Impregnation of Electrodes
 D. Staschewski .. 95
 - High-Temperature Fuel Cells; Part 1: How the Molten Carbonate Cell Works and the Materials That Make it Possible
 N.Q. Minh .. 103
 - High-Temperature Fuel Cells; Part 2: The Solid Oxide Cell
 N.Q. Minh .. 109
Chapter 4: Hydrogen Production 159
4.1 Introduction .. 159
4.2 Hydrogen Production from Fossil Fuels 159
4.3 Water Electrolysis 162
4.4 Thermochemical Water Decomposition 166
4.5 Photo Conversion 167
4.6 Hydrogen Production from Biomass 170
4.7 Conclusion .. 173
References ... 173
Reprints:
Modern and Prospective Technologies for Hydrogen Production from Fossil Fuels
M. Steinberg and H.C. Cheng 177
Technology Assessment of Advanced Electrolytic Hydrogen Production
S. Dutta ... 221
Economical and Technical Evaluation of UT-3 Thermochemical Hydrogen Production Process for an Industrial Scale Plant
A. Aochi, T. Tadokoro, K. Yoshida, H. Kameyama, M. Nobue, and T. Yamaguchi 229
Photoelectrochemical and Photocatalytic Methods of Hydrogen Production: A Short Review
N. Getoff .. 239
Hydrogen Production by Cyanobacteria
G.D. Smith, G.D. Ewart, and W. Tucker 251
Pine and Willow as Carbon Sources in the Reaction Between Carbon and Steam to Produce Hydrogen Gas
R.C. Timpe, R.E. Sears, and T.J. Malterer 259

Chapter 5: Hydrogen Safety 281
5.1 Introduction .. 281
5.2 Accidents and Safety Studies 281
5.3 Hazards .. 282
5.4 Preventive and Safety Measures 284
5.5 Conclusion .. 287
Reference .. 288
Reprints:
Aspects of Safety and Acceptance of LH₂ Tank Systems in Passenger Cars
K. Pehr ... 289
Is Hydrogen a Safe Fuel?
J. Hord ... 315
Safety Aspects of a Hydrogen-Fuelled Engine System Development
L.M. Das .. 335
M. Fischer .. 341
Preface

This book has been written as part of an ongoing program in hydrogen fuel for surface transportation at the College of Engineering—Center for Environmental Research and Technology (CE-CERT) at the University of California, Riverside. Faculty, students, and staff who are working with new technologies for hydrogen production and hydrogen-fueled vehicles have developed this book as a comprehensive overview, reference, and database on the subject. The book provides background information on the advantages and disadvantages of hydrogen as a fuel for surface transportation, describes the current state of technology of hydrogen-fueled vehicles, and discusses the future requirements of the so-called “hydrogen economy.” We believe that the reprints and introductory material of each chapter will be invaluable to new and experienced researchers in the field.

The hydrogen program at CE-CERT is directed by Joseph M. Norbeck, CE-CERT’s Director, and Project Manager James W. Heffel. The development of this book was supervised by Steven E. Belinski, who was also the primary editor. The following individuals were responsible for writing the individual chapters: Thomas D. Durbin contributed to all the chapters; Bassam Tabbara contributed to Chapters 3, 6, and 7; John M. Bowden contributed to Chapters 4 and 6; and Michelle C. Montano contributed to Chapter 5. Helen Ku assisted with the preparation of the final manuscript.

This book is based on information collected in a comprehensive literature survey which was performed as part of a larger project funded by the South Coast Air Quality Management District (SCAQMD). The opinions, findings, recommendations and/or conclusions do not necessarily represent the views of the SCAQMD. The SCAQMD has not approved or disapproved of this book’s contents, nor has the SCAQMD passed judgement upon the accuracy or adequacy of the information presented herein.

Since the field of hydrogen for surface transportation is evolving so rapidly, information on current developments in the field of hydrogen-fueled vehicles and the hydrogen economy can be obtained directly from CE-CERT at (909) 781-5791.

Joseph M. Norbeck
James W. Heffel
Thomas D. Durbin
Bassam Tabbara
John M. Bowden
Michelle C. Montano

Riverside, California
April 1995