Introduction to Engine Valvetrains
Other SAE titles of interest:

Internal Combustion Engine Handbook—
Basics, Components, Systems, and Perspectives
By Richard van Basshuysen and Fred Schäfer
(Order No. R-345)

Advanced Three-Way Catalysts
By Joseph E. Kubsh
(Order No. PT-123)

For more information or to order a book, contact SAE International at
400 Commonwealth Drive, Warrendale, PA 15096-0001;
phone (724) 776-4970; fax (724) 776-0790;
e-mail CustomerService@sae.org;
website http://store.sae.org.
Introduction to Engine Valvetrains

Yushu Wang
Acknowledgments

I gratefully acknowledge my former colleagues in valvetrain engineering in Engine Air Management Operations at Eaton Corporation. My discussions with them, whether formal or casual, were invaluable in forming my knowledge base on this subject. These colleagues include Craig Bennett, Hope Bolton, Victoria Bouwens, Bryce Buuck, Rob Clark, James Dean, Mike Froehlick, Mike Guzak, Ed Hurlbert, George Hillebrand (retired), Larry Jenkins (retired), Jay Larson (retired), Doug Nielson, Sandy Schaefer, Brad Trine, and Steve Young (retired).

In addition, I gratefully acknowledge Gary Barber of Oakland University, Tim Lancefield of Mechadyne International, Michael Levin of Ford Motor Company, Heron Rodrigues of Engineering Sintering Components, Mark Theobald of General Motors Corporation, and Haoran Hu and Dong Zhu of Eaton Corporation Innovation Center.

Finally, I thank Kris Hattman and Jeff Worsinger of SAE International for their patience and assistance in helping me to prepare the manuscript.
In more than 100 years of internal combustion engine history, tremendous knowledge about
valvetrains has been accumulated and published. However, much of the technical literature and
many of the books dealing with the design, construction, and maintenance of various compo-
nents of valvetrains are scattered, and the design engineer or student seldom has time to search
through several sources of information for a solution to a problem or question. Therefore, this
book aims to present a unified, precise, clear, and systematic description and explanation of the
fundamentals of all essential components of valvetrains, as well as the valvetrain as a system.
The objective is to introduce and explain fundamental valvetrain engineering concepts so that
the reader can appreciate the design and material considerations and can understand the difficul-
ties the engine designer faces in designing a valvetrain system to satisfy the functional require-
ments and the manufacturer’s challenges in producing components that satisfy the designer’s
requirements. This book also provides up-to-date, broad-based, in-depth information devoted to
the design, material and metallurgy, testing, tribology, and failure analysis of valvetrains. The
completeness of the information given here should make the book useful as a reference source
for design engineers and students alike.

The material within this book has come from many sources. The published sources have been
acknowledged. Although great pains have been taken to avoid errors, it is impossible to eliminate
them entirely in a work of this magnitude. I hope that readers who discover errors will kindly
notify me or the publisher, so that those errors can be corrected at the first opportunity.
Contents

Chapter 1 Introduction and Overview of Engines ... 1
 1.1 Engine Fundamentals .. 1
 1.1.1 Definition of an Engine ... 1
 1.1.2 Types of Internal Combustion Engines 2
 1.1.3 Typical Internal Combustion Engine Structure 3
 1.2 Principles of the Four-Stroke Combustion Cycle 4
 1.2.1 Spark Ignition Engines .. 5
 1.2.2 Compression Ignition Engines ... 9
 1.3 Two-Stroke Engines .. 10
 1.4 Engine Displacement and Compression Ratio 11
 1.5 Engine Performance .. 13
 1.5.1 Torque ... 13
 1.5.2 Horsepower ... 16
 1.6 Internal Combustion Engine Efficiency .. 18
 1.6.1 Mechanical Efficiency ... 18
 1.6.2 Thermal Efficiency ... 18
 1.6.3 Engine Volumetric Efficiency ... 22
 1.7 References .. 23

Chapter 2 Valvetrain Systems .. 25
 2.1 Overview of Valvetrain Systems ... 25
 2.2 Valve Actuation ... 26
 2.2.1 Valve Lift and Duration .. 27
 2.2.2 Valve Timing and Overlap ... 27
 2.2.3 Effect of Valve Timing on Performance and Emissions 31
 2.2.4 Valvetrain System Timing .. 33
 2.3 Variable Valve Actuation—Cam Driven .. 34
 2.3.1 Overview of Variable Valve Timing .. 34
 2.3.2 Variable Valve Timing by Camshaft Phasing 36
 2.3.3 Variable Valve Lift by Cam Profile Switching 40
 2.3.4 Variable Valve Lift by Lost Motion 43
 2.3.5 Variable Valve Actuation by Cam Phasing and Variable Lift .. 46
 2.3.6 Variable Valve Actuation by Varying the Rocker Ratio 48
 2.4 Variable Valve Actuation—Camless System 52
 2.4.1 Electromagnetic Valve Actuation .. 53
 2.4.2 Electrohydraulic Valve Actuation ... 55
 2.4.3 Comparison of Various Variable Valve Actuation Systems .. 57
Contents

3.6.2 Valve Guide Design... 256
3.6.3 Guide Materials .. 260
3.6.4 Guide Material Properties.. 262
3.7 Rocker Arms.. 266
 3.7.1 Rocker Arm Configurations.. 266
 3.7.2 Design Guidelines .. 269
 3.7.3 Rocker Arm Materials ... 273
 3.7.4 Variable Actuation Rocker Arms ... 274
3.8 Valve Springs... 276
 3.8.1 Introduction .. 276
 3.8.2 Design Considerations ... 281
 3.8.3 Spring Performance .. 285
 3.8.4 Valve Spring Materials ... 295
3.9 Valve Stem Seals .. 299
 3.9.1 Introduction .. 299
 3.9.2 Design Considerations ... 299
 3.9.3 Seal Materials ... 310
3.10 Keys .. 310
 3.10.1 Single-Bead Keys .. 311
 3.10.2 Multiple-Bead Keys ... 312
 3.10.3 Dimensions and Tolerances .. 313
 3.10.4 Key Materials .. 313
3.11 Retainers... 313
 3.11.1 One-Piece Retainers ... 314
 3.11.2 Two-Piece Retainers ... 316
 3.11.3 Dimensions and Tolerances .. 317
 3.11.4 Retainer Materials ... 317
3.12 Other Components.. 317
 3.12.1 Valve Rotators .. 318
 3.12.2 Pushrods ... 320
 3.12.3 Valve Bridges .. 322
 3.12.4 Crosshead Rocker Arms .. 323
3.13 References .. 324

Chapter 4 Valvetrain Testing .. 329
 4.1 Introduction .. 329
 4.2 Materials and Testing ... 329
 4.2.1 Material Behavior ... 330
 4.2.2 Mechanical Tensile Testing .. 348
 4.2.3 Hardness Testing ... 354
 4.2.4 Fracture Toughness Testing .. 363
 4.2.5 Fatigue Testing .. 371
 4.2.6 Friction Testing ... 383
 4.2.7 Wear Testing ... 386
 4.2.8 Corrosion Testing ... 391
Contents

5.4 Valvetrain Wear .. 491
5.4.1 Introduction .. 491
5.4.2 Cam and Follower Interface 491
5.4.3 Valve Seat and Seat Insert Interface 494
5.4.4 Valve Stem and Guide Interface 494
5.4.5 Valve Tip Wear ... 495

5.5 Valvetrain Lubrication .. 495
5.5.1 Film Thickness .. 495
5.5.2 Stress Effects ... 498
5.5.3 Viscosity Effects .. 500
5.5.4 Anti-Wear Additive Effects 501
5.5.5 Temperature Effects 503
5.5.6 Engine Oil Degradation 504
5.5.7 Soot and Carbon Effects 505
5.5.8 Lubricant and Material Reactions 505

5.6 Surface Engineering of Valvetrain Components 507
5.6.1 Overview .. 507
5.6.2 Selective Surface Hardening 507
5.6.3 Diffusion Surface Hardening 510
5.6.4 Thin Film Coatings 517
5.6.5 Thick Film Coatings 521
5.6.6 Other Surface Treatments 526

5.7 References .. 531

Chapter 6 Valvetrain Failure Analysis 537
6.1 General Failure Analysis Practice 537
6.1.1 Background Information 538
6.1.2 Preliminary Examination 538
6.1.3 Macroscopic Examination and Analysis 539
6.1.4 Metrology Measurement 539
6.1.5 Microscopic Examination and Analysis 539
6.1.6 Scanning Electron Microscopy and Energy Dispersive X-Ray Spectrometry Analysis 540
6.1.7 Mechanical Testing and Simulation Testing 541
6.1.8 Determination of Failure Mechanisms 541
6.1.9 Root Cause of Failure 543
6.1.10 Writing the Failure Analysis Report 544

6.2 Valve Failures ... 546
6.2.1 Overview .. 546
6.2.2 Valve Face Failures 547
6.2.3 Valve Seat Failures 550
6.2.4 Valve Fillet Failures 553
6.2.5 Stem-Fillet Blend Area Failures 553
6.2.6 Stem Failures ... 553
6.2.7 Keeper Groove Failures 554
6.2.8 Tip Failures .. 554