An Introduction to Engine Testing and Development
Other SAE titles of interest:

By A.J. Martyr and M.A. Plint
(Product Code: R-382)

Modern Engine Technology from A to Z
By Richard van Basshuysen and Fred Schäfer
(Product Code: R-373)

Internal Combustion Engine Handbook: Basics, Components, Systems, and Perspectives
By Richard van Basshuysen and Fred Schäfer
(Product Code: R-345)

Introduction to Internal Combustion Engines, Third Edition
By Richard Stone
(Product Code: R-278)

Advanced Engine Technology
By Heinz Heisler
(Product Code: R-163)

For more information or to order a book, contact SAE International at 400 Commonwealth Drive, Warrendale, PA 15096-0001; phone (724) 776-4970; fax (724) 776-0790; e-mail CustomerService@sae.org; website http://store.sae.org.
An Introduction to Engine Testing and Development

Richard D. Atkins
Contents

Introduction ... xiii

Chapter 1
The Test Facility and Methods of Measuring Engine Power
Test Facilities and Test Cells	1
Dynamometers	4
Function of the Dynamometer	7
How the Dynamometer Works	7
Dynamometer Types and Operating Principles	7
Operating the Dynamometer	11
Hydraulic Water Brakes	11
Electric Dynamometers	12
Mechanism of the Dynamometer	15
Dynamometer Characteristics	17
Selection of Prop Shafts	19

Chapter 2
In-Cell Services
Raw Water Services (Cooling)	21
Function of the Raw Water Cooling Circuit	22
Site Water Services	22
Air Services	29
Combustion or Induction Air	29
Air Cooling and Ventilation	32
Docking Rigs	33
Some Engine Testing Pointers	36
Pre-Start, Operating the Dynamometer	36
Predictive Analysis	36
A Transient Test	37
The Key to Control Systems	37
Proportional Response	39
Integral Response	39
Derivative Response	39
Tuning	40

Chapter 3
Instrumentation: Temperature, Pressure, Flow, and Calibration
Temperature: The Principle and Application of Thermocouples	41
The Principle of Thermocouple Operation	41
The Law of Interior Temperatures	42
Standardized Thermocouples and Categories	44
Pressure: A Review of Pressure Measuring Devices	44
What is Pressure?	44
Pressure Measuring Devices	45
Transducers	48
Types of Pressure Transducers	51
Flow Measurement	52
Mass Airflow Sensors	53
Rotameters	54
Square Edged Orifice Plates	54
Lucas-Dawe Air Mass Flow Meters	56
Chapter 6 Spark Plugs ... 101
Spark Plug Ratings .. 103
Running a Spark Plug Rating Test 104
Radio Frequency Interference ... 108
Summary ... 108

Chapter 7 Exhaust Gas Emissions and Analysis 111
Exhaust Gas Emissions .. 111
 Group A—Gases that Can Cause Death or Injury Within Minutes ... 111
 Groups B and C—Gases that Can Cause Death or Serious Illness with Prolonged Exposure and Can Create Minor Health Problems or Are a Nuisance 112
 Group D—Gases Associated with Global Warming 113
Simple Combustion Theory, Ideal Combustion, and Stoichiometry ... 113
 Of What Is Fuel Composed? ... 113
 What Are Diesel Emissions? ... 114
 What Makes Up Air? .. 122
 How Does Combustion Occur? 122
 Why Do Internal Combustion Engines Emit Gases? 125
 Balanced Chemical Equations 127
 Non-Ideal Combustion—Formation of Pollutants 129
 Fuel Droplets .. 129
Combustion Differences Between Diesel and Gasoline Engines .. 130
Direct and Indirect Injection Diesel Engines 131
Operating Principles of Emission Reduction Devices Fitted to Internal Combustion Engines 137
 Catalyst Operation ... 137
 Exhaust Gas Recirculation ... 138
 Effects of Brake Mean Effective Pressure 138
Principles and Operation of Raw, Dilute, Continuous, and Bag Sampling ... 138
 Dilute and Raw Sampling ... 138
 Particulate Measurement ... 139
 Principles and Operation of Flow Tunnels 139
 Filter Handling and Weighing 142
 Principles and Operation of Micro-Tunnels 142
 Principles and Operation of Mini-Tunnels 143
 Principle of Continuous Particulate Analyzers 143
 Hot and Cold Sampling ... 144
Essential Elements of a Sampling System 144
 Temperature Control ... 144
 Pressure Control .. 144
 Flow Rate ... 145
 Dryness ... 145
 Solid Particles ... 145
 Sample Pump ... 145
 Leak Checking ... 145
 Back Flushing .. 145
 Non-Dispersive Infrared Analyzer 145
 Flame Ionization Detector ... 147
Chapter 8

Combustion Analysis .. 161
Basic Combustion .. 161
Internal Combustion Engine ... 162
 Intake Stroke .. 162
 Compression Stroke .. 162
 Ignition Stroke ... 163
 Power Stroke .. 164
 Exhaust Stroke ... 165
Cylinder Pressure Measurements .. 166
Efficiency Loss Mechanisms in the Vehicle Drivetrain 168
 What Are the Efficiency Loss Mechanisms? 168
 Heat Losses .. 171
 Efficiency Overview .. 175
Features of Combustion Analysis and Diagnostics 175
 Brake Mean Effective Pressure .. 177
 Indicated Work—Indicated Mean Effective Pressure 177
 Pumping Mean Effective Pressure 178
 Net Mean Effective Pressure ... 178
 Frictional Mean Effective Pressure and Mechanical
 Efficiency .. 179
 Indicated Efficiency .. 179
 Volumetric Efficiency ... 179
Types of Combustion Diagnostics 180
 Non-Heat Release ... 180
 Heat Release ... 182
 Types of Heat Release Algorithms 182
 Thermodynamic Heat Release .. 184
 Recommendations ... 185
Combustion Variability .. 186
 How Does Combustion Variability Manifest Itself? 186
Causes ... 186
Impact ... 186
How Is Combustion Variability Quantified? 188
Abnormal Combustion .. 194
Incomplete Combustion .. 194
Causes of Misfire ... 194
Causes of Partial Burns 195
Knock .. 196
Pre-Ignition ... 199
Calibration Issues .. 200
Encoders ... 211
Data Integrity ... 212
Control Charts .. 213
Good Test Practices .. 215
Recommended Daily Checks 216
Summary ... 217

Some Calculations Used in Conjunction with Combustion Analysis Work 217
Combustion Efficiency .. 217
Determining the Effective Compression Ratio 218

Chapter 9 Turbochargers .. 221
Introduction ... 221
Pulse Energy ... 221
Charge Air Cooling ... 222
Turbocharger Matching ... 225

Chapter 10 Fitting Operations Within the Test Cell Best Practices ... 233
Stripping ... 233
Checking and Inspecting 233
Rebuilding .. 234
Golden Rule for Handing Over 234
Cleaning .. 234
Quality ... 234
Commonly Occurring Incidents When Testing Engines
on Dynamometers ... 234
Damaged Valve or Piston and Bore 234
Timing Belt “Jumping a Tooth or Three” 235
Sheared or Snapped Prop Shaft 235
Summary ... 235

Chapter 11 The Basic Internal Combustion Engine .. 237
Introduction ... 237
Engine Lubrication System 238
Lubrication System Components 238
Instrumentation of the Lubrication System 241
Engine Cooling System ... 241
Cooling System Components 241
Instrumentation of the Cooling System 244
Engine Induction System 245
Induction System Components 245
Instrumentation of the Inlet Manifold 247
Chapter 12	Quality Standards for Engine Testing249
Quality Standards for Test Laboratories250	
BS EN ISO 9000 Series250	
United Kingdom Accreditation Service (UKAS) (EN 45001).....	.250	
Implications of Quality Standards251	

Chapter 13	Base Calculations253
Torque Backup253	
Motoring Mean Effective Pressure253	
Volumetric Efficiency253	
Specific Fuel Consumption254	
Correction Factors254	
Phase ..	.255	
Cycle ..	.255	
Process ..	.255	
Heat255	
Enthalpy ..	.256	
Specific Enthalpy256	
Principle of the Thermodynamic Engine256	
Mechanical Power ..	.256	
Electrical Power ..	.257	
Laws of Thermodynamics257	
The Conservation of Energy257	
Joule's Law ..	.257	
Entropy ..	.258	
Correction Formulae260	

Examples of Calculations Required Within the Test Cell

Environment262
Test Bed Fuel Flow Measurement262
Test Bed Airflow Measurement262
Brake Specific Fuel Consumption262
Brake Specific Air Consumption263

Efficiencies .. | .264 |

Thermal Efficiency264
Mechanical Efficiency264
Volumetric Efficiency265

Air/Fuel Ratio ... | .265 |

First Law of Thermodynamics,... | .266 |

Second Law of Thermodynamics | .266 |

Mathematical Basis for Power Correction Factor | .268 |

Swept Volume ..	.270
Compression Ratio270
Brake Mean Effective Pressure270
Pumping Mean Effective Pressure270
Compression/Expansion Mean Effective Pressure271
Friction Mean Effective Pressure ... 271
Brake Torque and Power ... 271
Motoring Mean Effective Pressure 272

Glossary of Terms and Acronyms Used in the Design and Testing of Internal Combustion Engines .. 273

Index ... 283

About the Author ... 291
Introduction

How does one describe the internal combustion engine? My grandfather, a renowned mechanical engineer, defined it for me as “the infernal confusion engine.” Now, many years later, with countless research and development projects behind me, I believe that he was possibly more accurate than he ever envisaged.

Simply put, the internal combustion engine is an energy conversion device that converts thermal energy (heat) into mechanical energy. When hydrocarbon fuel is burned in air, some of the chemical energy contained in the fuel is converted into work. The nitrogen trapped in the cylinder is heated by the energy released when the carbon and hydrogen in the fuel react with oxygen in the air. That’s all there is to it.

It is generally accepted that a Dutch physicist, Christian Huygens, first formulated the principle of the internal combustion engine in 1680; however, he proposed to use gunpowder as the motive power source. In 1860, Etienne Lenoir, a self-taught mechanic, revealed to the world the first internal combustion engine that worked. For some time, engineers had understood both the low efficiency of the steam engine and the desirability of a device that would burn its fuel inside the cylinder instead of using it to produce steam as an intermediary. Many engines were designed, but Lenoir’s engine was the first recorded engine to pass the experimental stage. It was fueled by coal gas (used at that time primarily for street and home lighting). This coal gas was mixed with air and was drawn into a cylinder by withdrawal of a piston. At the midpoint, electric sparks ignited the mixture, so that only the second half of each stroke was powered. However, Lenoir’s engine was double acting, so fuel entered either side of the piston in turn. The operating principle closely followed that of the steam engine. The engine ran, but it was very inefficient, the gas was expensive, and vast quantities of gas were used (almost 3 cubic meters) to produce 0.75 kW at 100 rev/min. In addition, it had a significant noise and vibration problem, producing violent shocks at each explosion, which Lenoir attempted to damp out by the use of springs and other devices to absorb the power stroke shocks. In 1862, a railway engineer named Alphonse Eugène Beau de Rochas published a pamphlet about improvement in locomotive design, in which he suggested compounding the steam engine with gas engines. This was a significant advance, and to date, its principles have not been challenged. He stated that the gas in the engine should ignite continuously under high compression, which was instigated by making it work in four stages:

1. Stage one—Intake during one whole stroke of the piston
2. Stage two—Compression during the following stroke
3. Stage three—Firing at the dead point, and expansion during the third stroke
4. Stage four—Expulsion of the burned gases from the cylinder

Thus, Beau de Rochas presented the principle of the four-stroke engine as we understand it today. However, he never undertook to construct an engine on these lines nor to present a paper to his peers. As frequently happens in life, quite independently of Beau de Rochas, Nikolaus August Otto, a German traveling salesman who was fascinated by all things technical and was blessed with an inquiring mind, took up the invention. The
problem of enabling the engine to run efficiently by controlling the richness of the gas/air mixture presented a great challenge. Otto produced an engine in which the expulsion drove the piston upward into a vertical cylinder, where the contraction of the spent fuel as it cooled produced a vacuum, into which atmospheric pressure and gravity forced the piston back. This followed the system used by the steam-driven beam engines of the eighteenth century. The engine worked, and while it was better than the Lenoir design, it still was a vibrating, noisy, and inefficient device.

Tradition has it that one day in 1875, Otto was watching a smoking chimney, and his imagination was caught by the smoke that first emerged in dense plumes and then gradually dissipated into the air. His supposition was that it should be possible to introduce a rich fuel/air mixture to the point of ignition, where it would be cushioned from the piston by a much thinner layer of inert air next to it. This principle of stratification was almost certainly, in this instance, incorrect. However, to produce it, Otto reinvented the four-stroke cycle as Beau de Rochas had envisaged it (but henceforth was called the “Otto cycle”) and embodied it in his “silent Otto engine” of 1876, which was a tremendous success, 2 kW at 180 rev/min. The engine utilized a very dangerous open flame ignition system to fire the coal gas fuel that Otto was using. (Lenoir used an advanced spark ignition system.) In parallel with Otto’s work, an Austrian inventor named Siegfried Marcus in 1867 had invented a carburetor to convert liquid petroleum into flammable gas.

In 1861, Otto patented a two-stroke engine that ran on gas. Otto and his partner, a German industrialist named Eugen Langen, built a factory and worked on improving the engine. Their two-stroke engine won a gold medal at the 1867 World’s Fair in Paris. The company was named N.A. Otto & Co., which was the first company to manufacture internal combustion engines. The company exists today as Klockner-Humboldt-Deutz AG, the oldest company manufacturing internal combustion engines and the world’s largest manufacturer of air-cooled diesel engines.

In May 1876, Otto built the first four-stroke piston cycle internal combustion engine. This was the earliest practical alternative to the steam engine. In the next ten years, more than 30,000 of the engine were sold. This engine was the prototype of all combustion engines that have since been built. The operating principle of the engine was named the “Otto cycle” in honor of Nikolaus Otto. The design of the engine consists of four strokes of a piston, which draw in and compress a gas/air mixture within a cylinder. This process results in an internal explosion. Otto’s gas/motor engine had the patent number 365,701. In 1862, Alphonse Beau de Rochas, a French engineer, had patented the four-stroke cycle. However, Otto was the first to build a four-stroke cycle engine. Nevertheless, in 1886, Otto’s patent was revoked when Beau de Rochas’ patent was revealed. Nikolaus August Otto died on January 26, 1891.

Meanwhile, Gottlieb Daimler constructed a very light engine using Otto’s model and attached one of them to a bicycle. This became the world’s first motorcycle. Karl Benz built his first three-wheeled automobile employing Otto’s engine. Daimler also constructed an automobile using Otto’s engine. The firms of Daimler and Benz merged and manufactured the famous Mercedes-Benz vehicles. George Brayton, an American engineer, developed a two-stroke kerosene engine in 1873, but it was too large and too slow to be commercially successful.

In 1885, Gottlieb Daimler constructed what generally is recognized as the first modern high-speed internal combustion engine. Small and fast with a vertical cylinder, the engine used gasoline inducted via a carburetor. In 1889, Daimler introduced a four-stroke
engine with mushroom-shaped valves and two cylinders arranged in a “V” configuration, having a much higher power-to-weight ratio. With the exception of electric starting, which would not be introduced until 1924, all modern gasoline engines are descended from Daimler’s engines.

The internal combustion engine as we understand it has been with us now for some 120 years. With the advent of computer-aided design systems, flow visualization, and highly advanced mathematical models, one would think it would be possible to design and manufacture the ideal engine the first time, every time. If only this were the case.

There is no doubt that fantastic advances are being made at an accelerating rate, but the internal combustion engine is an extremely complex device, requiring a sound understanding of many disciplines. With ever diminishing world oil stocks and increasingly stringent government legislation worldwide, the challenges facing the automotive engineer have never been greater.

Downsizing, the intelligent use of new technologies, and incorporation of these into cost-effective vehicles will present the automotive engineer with stimulating and challenging work for decades to come. My purpose in writing this book is to present some of the basic principles required in the testing and development of the internal combustion engine powertrain system, thus giving the new automotive engineer the basic tools required to meet these challenges.

Richard D. Atkins
Hastings, 2009