Analysis Techniques for Racecar Data Acquisition
Other SAE books of interest:

Hands-On Race Car Engineer
By John H. Glimmerveen
(Product Code: R-323)

Kinetic Energy Recovery Systems for Racing Cars
Edited by Alberto Boretti
(Product Code: PT-159)

Engine Failure Analysis—Internal Combustion Engine Failures and Their Causes
By Stefan Zima and Ernst Greuter
(Product Code: R-320)

For more information or to order a book, contact SAE International at 400 Commonwealth Drive, Warrendale, PA 15096-0001, USA; phone 877-606-7323 (U.S. and Canada only) or 724-776-4970 (outside U.S. and Canada); fax 724-776-0790; email CustomerService@sae.org; website http://books.sae.org.
Dedicated to Daan and Savitri
Contents

Preface to the Second Edition .. xiii
Preface to the First Edition ... xv
Acknowledgments .. xvii

Chapter 1 Introduction ... 1
 1.1 What Is This Book All About? 1
 1.2 What Is Data Acquisition? 5
 1.3 Hardware ... 11
 1.4 Recent Hardware Trends 12

Chapter 2 Data Analysis Software Requirements 17
 2.1 General Requirements for Data Acquisition Software 17
 2.2 Different Ways of Displaying Data 18
 2.3 Keeping Notes with Data Files 26
 2.4 Mathematical Channels 28
 2.5 Data Overlays .. 29
 2.6 Filtering ... 30
 2.7 Exporting Data to Other Software Packages 31
 2.8 Getting Organized .. 32

Chapter 3 The Basics .. 39
 3.1 Check the Car’s Vital Signs 39
 3.2 Lap Markers and Segment Times 45
 3.3 Comparing Laps .. 48
 3.4 Track Mapping .. 58
 3.5 The Beginner’s Data Logging Kit 62
 3.6 A Possible Approach to the Testing of Sensor Readings ... 72

Chapter 4 Straight-Line Acceleration 77
 4.1 Torque and Horsepower 77
 4.2 Traction and Longitudinal Slip 83
 4.3 TCS and Slip Ratios ... 88
 4.4 Time versus Distance .. 92
 4.5 The Importance of Corner Exiting Speed 93
 4.6 Drag Racing Specifics ... 95
Contents

Chapter 5 Braking ... 101
 5.1 Braking Quickness .. 101
 5.2 Braking Effort ... 102
 5.3 Braking Points ... 104
 5.4 Lock-up ... 106
 5.5 Brake Balance ... 107
 5.6 Pedal Travel ... 114
 5.7 ABS ... 114
 5.8 Brake Temperature Measurement 116

Chapter 6 Gearing ... 123
 6.1 Up-shifting .. 123
 6.2 Down-shifting ... 131
 6.3 The Gear Chart .. 133
 6.4 Total Gear Ratio Channel ... 134
 6.5 Determining Correct Gear Ratios 136
 6.6 Determining in Which Gear to Take a Corner 136

Chapter 7 Cornering ... 139
 7.1 The Cornering Sequence .. 139
 7.2 The Traction Circle .. 142
 7.3 Effects of Speed .. 148
 7.4 Driver Activities That Indicate Vehicle Balance 152
 7.5 The Understeer Angle .. 156
 7.6 Vehicle Balance with a Yaw Rate Sensor 163
 7.7 Front and Rear Lateral Acceleration 166

Chapter 8 Understanding Tire Performance 169
 8.1 Estimating Grip Levels .. 169
 8.2 Working with Tire Pressure Monitoring Systems 175
 8.3 Working with Infrared Tire Temperature Sensors 180
 8.4 Where Does Tire Temperature Come From? 182
 8.5 Working Temperature Range of the Tires 184
 8.6 Lateral Load Transfer and Tire Temperature 188
 8.7 Tire Workload Distribution 193
 8.8 Camber Evaluation with Tire Temperature Sensors 194
 8.9 Tire Pressure Evaluation with Tire Temperature Sensors 196

Chapter 9 Quantifying Roll Stiffness Distribution 199
 9.1 Measuring Suspension Roll Angle 199
 9.2 The Roll Gradient ... 201
Contents

9.3 Using Roll Gradients as a Setup Tool .. 208
9.4 Front to Rear Roll Angle Ratio .. 212
9.5 Using the Roll Ratio as a Setup Tool ... 215
9.6 Suspension Troubleshooting ... 218
9.7 Pitch Gradient .. 219

Chapter 10 Wheel Loads and Weight Transfer 221
10.1 Lateral Weight Transfer ... 221
10.2 Longitudinal Weight Transfer .. 230
10.3 Banking and Grade Effects ... 231
10.4 Total Wheel Loads ... 234
10.5 Determining Wheel Loads with Modal Analysis 240
10.6 Measuring Wheel Loads with Suspension Load Cells 250
10.7 Tire Spring Rates ... 253
10.8 Chassis Torsion .. 255

Chapter 11 Shock Absorbers ... 257
11.1 Shock Absorber Velocity Analysis ... 257
11.2 Determining in Which Range to Tune the Shock Absorbers 260
11.3 Shock Speed Ranges ... 265
11.4 The Shock Speed Histogram ... 266
11.5 The Shock Speed Box Plot .. 279
11.6 Shock Speed Run Charts .. 282

Chapter 12 Suspension Analysis in the Frequency Domain ... 287
12.1 Introducing Frequency Analysis ... 287
12.2 Frequency Analysis versus Time-Space Analysis 292
12.3 Theoretical Analysis .. 295
12.4 Suspension Optimization Using Frequency Analysis 303
12.5 Modal Analysis .. 304
12.6 Modal Frequency Issues .. 309
12.7 Nonlinear Considerations ... 315
12.8 Frequency Analysis from Sensor Data 316

Chapter 13 Aerodynamics ... 321
13.1 Aerodynamic Measurements ... 321
13.2 Air Density .. 323
13.3 Dynamic Pressure ... 326
13.4 Ride Height Measurement .. 328
13.5 Estimating Drag and Downforce from Logged Data 331
13.6 The Coast-down Test .. 334
Contents

13.7 The Constant Velocity Test .. 339
13.8 A Worked out Example of a Straight-Line Test 343
13.9 Airbox Efficiency .. 350

Chapter 14 Analyzing the Driver ... 353
14.1 Improving Driver Performance 353
14.2 Driving Style Evaluation ... 356
14.3 Throttle Application .. 357
14.4 Braking .. 368
14.5 Shifting Gears ... 380
14.6 Steering .. 380
14.7 The Driving Line ... 383
14.8 Driver Consistency over Multiple Laps 394

Chapter 15 Simulation Tools .. 395
15.1 Introduction ... 395
15.2 Suspension Kinematics Simulation 397
15.3 Lap Time Simulation .. 400
15.4 A Worked out Example .. 418
15.5 How to Integrate Lap Time Simulation in Daily Data Acquisition Tasks .. 421
15.6 Putting the Driver in the Simulation 423

Chapter 16 Using the Data Acquisition System for Race Strategy .. 431
16.1 Fuel Consumption .. 431
16.2 Lap Time Variation During a Race 437

Chapter 17 Data Analysis Using Metrics .. 443
17.1 What Are Metrics? .. 443
17.2 Why Use Metrics? ... 444
17.3 How to Create Metrics .. 446

Chapter 18 Track Data ... 453
18.1 What Can Be Learned from the Data about the Racetrack? 453
18.2 Racetrack Metrics .. 455
18.3 Speed and Gear Histograms ... 456
18.4 The Friction Circle ... 457
18.5 How Bumpy Is the Track Surface? 459
Chapter 19 Introduction to Measurement 461
 19.1 Introduction .. 461
 19.2 Analog-Digital Conversion: Accuracy Implications 462
 19.3 Sensor Selection and Application .. 464
 19.4 Measurement Uncertainty ... 467
 19.5 Temperature Sensors ... 472
 19.6 Pressure Sensors ... 478
 19.7 Displacement Sensors .. 481
 19.8 Acceleration Sensors ... 482
 19.9 Speed Sensors .. 484
 19.10 Strain Gages ... 485
 19.11 Torque Sensors .. 487
 19.12 The Pitot Tube .. 488
 19.13 Oxygen Sensors ... 489
 19.14 GPS ... 490
 19.15 Laser Distance Sensors ... 492
 19.16 Surface Acoustic Wave Technology 494

List of Symbols .. 495
 English Letters .. 495
 Greek Symbols ... 501

References ... 503

Bibliography .. 505

Index ... 507

About the Author .. 515
Preface to the Second Edition

When the first edition of this book was first published in 2008, my goal was to create a book presenting up-to-date techniques to analyze data collected from onboard data logging systems in race cars. Since the first edition, I have received a great deal of feedback from people all over the world indicating that I was successful in obtaining this goal. I am extremely happy that this book has been able to fill a void in this ever-developing area.

However, since 2008 my personal understanding of this subject has evolved. First of all, the technology has developed, making it possible to obtain more advanced and accurate data regarding the performance of race cars at less cost. There are a number of observations that have led me to write this second edition.

Some race series have actively restricted data logging to decrease the team’s running budgets. In these cases, it is extremely important that a maximum of information be extracted and interpreted from the hardware that is at hand. Although I do not agree with the philosophy of limiting data acquisition by sporting regulations, it does level the field, as everybody will have access to the same information. This means that a team that uses the data more efficiently will have an edge over the competition.

The opposite is also true. The ever-decreasing cost of electronics makes advanced sensors and logging capabilities more accessible for everybody. With this comes the risk of information overload. There will be a point where a team will no longer be able to process all the available data. Therefore, techniques need to be provided that will help in drawing the right conclusions quickly from very large data sets.

I wanted to include newly gained knowledge since the first publication. Experience is a continuous process, and I felt that the time had come to upgrade the book. There were some items in the first edition that needed to be addressed, explained better, or with more examples. The book contains three new chapters. The first (chapter 8) covers the techniques that are available to analyze tire performance. The second (chapter 17) gives an introduction to metric-driven analysis, a technique that is used throughout the book. Finally, a chapter was added to explain what kind of information the data contains about the track being driven on (chapter 18).
Preface to the First Edition

A proven way for athletes to be successful in any sporting discipline is for them to record their performance, analyze what has happened, and draw conclusions from the factors that influence that performance. Marathon runners log their running speed and distance along with their heart rate to optimize their training schedules. Football players record their games on video to evaluate techniques, performance, and tactics. Chess players write down every move in a game to replay and analyze it afterward. They measure something, learn from it, and try to use it to their advantage the next time.

In motor racing, sophisticated recording devices are used in conjunction with numerous sensors to record what the car and its driver are doing. Engineers often are employed full-time to maintain the system, analyze the recorded data, and draw the correct conclusions from it.

Motor racing is known for high-end technology, and this technology changes every day. Ten years ago, race car data acquisition was somewhat limited to well-funded teams in high-profile championships. Nowadays, the cost of electronics has decreased dramatically. Powerful computers are available for very little expense. Data acquisition systems are now sold for the price of a single racing tire. This means data acquisition has become accessible to everyone.

Whatever the price of the data acquisition system, it is a waste of money if the recorded data is not interpreted correctly. This book contains enough information to prevent the investment in a data acquisition system from being a waste of money.

Whether measuring the performance of a Formula One race car or that of a road-legal street car on the local drag strip, the dynamics of the vehicles and their drivers remain the same. Identical analysis techniques apply. This book contains a collection of techniques for analyzing data recorded by any vehicle’s data acquisition system. It details how to measure the performance of the vehicle and driver, what can be learned from it, and how this information can be used to your advantage the next time the vehicle hits the track.
When I began working in motor racing in 1998, I soon learned that this business is a team effort. The sum of the qualities of each member determines the team’s success. Eight years later, when I wrote this book, I learned this also is a team effort, very similar to running a successful racing team. That is why I would like to begin by appropriately crediting “my” team.

First, I would like to thank everyone at SAE International for guiding this project in the right direction. Special thanks go out to Martha Swiss, intellectual property manager, Heather Slater, product developer, Terri Kelly, administrative assistant, and Terry Wilson for artwork.

A big contributor to this book was Josep Fontdecaba I. Buj, engineering director at Creuat S.L.; not only for writing chapter 12 but especially for the many discussions we had about suspension setup and data analysis. His input added immeasurable value to this book.

David Brown and Andrew Durant at Race Technology gave me detailed insight about GPS-based data acquisition techniques. I would like to thank them for providing me with the hardware that was used to create much of the data traces used throughout this book. Their company is proof that data acquisition can be affordable for all motor racing disciplines.

I am proud to have Cosworth Electronics support the creation of this book. The information and analysis files supplied by this company were invaluable. Thanks go out to Thomas Buckler, Robert Kirk and Michael de Cock.

The following people deserve credit for taking the time to evaluate the manuscript and for providing me with invaluable feedback: Peter Wright (consultant to the FIA), Dr. Wolfgang Ullrich (head of Audi Sport), John Glimmerveen (author of the book Hands-on Racecar Engineer), Doug and Bill Milliken (authors of the book Racecar Vehicle Dynamics), and William C. Mitchell (head of Mitchell Software).

This book addresses what I know about race car data acquisition, and what I know is influenced greatly by the people I had a chance to work with. Therefore, my great respect goes out to all the engineers, mechanics, and team owners that were there to teach me. I hope I can repay these debts when they read this book.

Every graph in this book was created by a race car driver. Many of these graphs resulted in successful track performance, pole positions, race victories, and championships. I thank all of these drivers for providing me with data to analyze.
Acknowledgments

Henrik Roos of the Simbin Development Team is the person that triggered my interest in technical writing. He gave me the idea to write a book on this little-documented subject in the first place.

Special thanks for this second edition go out to Pierre-Alain Aucouturier and Philippe Leuwers at Texys Sensors for their support and detailed supply of information on the latest sensor technologies. Also Giuseppe Callea of BHAI TECH srl. deserves special mention for his contribution in chapter 3 on the evaluation of sensor reading accuracies and the interesting discussions on simulation techniques.

I would like to thank Tony Gardner and David Tucker of iRacing.com for their help with the chapter on simulation. The first edition of this book proved quite popular in the online racing community. It surprised me to find out how close something—that is often wrongfully considered as a computer game—resembles real racing. I am sure that this interest group will find a lot of useful information in this book.

Jörge Segers