Onboard Diagnostics and Measurement in the Automotive Industry, Shipbuilding, and Aircraft Construction
Other SAE books of interest

Particulate Emissions From Vehicles
by Peter Eastwood
(Product Code: R-389)

Diesel Emissions and Their Control
by Magdi K. Khair and W. Addy Majewski
(Product Code: R-303)

Technology for Near-Zero Emission Gasoline Powered Vehicles
by Fuquan Zhao
(Product Code: R-359)

Green Technologies and the Mobility Industry
by Dr. Andrew Brown, Jr.
(Product Code: PT-146)

For more information or to order a book, contact:
SAE International
400 Commonwealth Drive
Warrendale, PA 15096-0001 USA
Phone: 877-606-7323 (U.S. and Canada only) or 724-776-4970 (outside U.S. and Canada)
Fax: 724-776-0790;
Email: CustomerService@sae.org;
Website: http://books.sae.org
Onboard Diagnostics and Measurement in the Automotive Industry, Shipbuilding, and Aircraft Construction

Michael Palocz-Andresen
Table of Contents

List of Figures ... xi
List of Tables ... xvii
Preface .. xix
Abbreviations and Definitions ... xxi

Chapter 1 - Main Focus .. 1
 1.1 Application in Motor Vehicles 1
 1.2 Classification .. 2
 1.3 Use in Ships and Airplanes .. 3
 1.4 Summary: Historical Development of OBD/OBM 6

Chapter 2 - Onboard Diagnostics (OBD) and Onboard
Measurement (OBM) in Motor Vehicles 7
 2.1 Historical Development ... 7
 2.2 Onboard Measurement (OBM) 10
 2.3 Combination of OBD and OBM 10
 2.4 Summary: Development of OBD/OBM System 11

Chapter 3 - Road Vehicle Monitoring 13
 3.1 Exhaust Gas Tests .. 13
 3.2 Classification of Vehicles in the EU 16
 3.3 Emission Limit Values ... 17
 3.3.1 Type Approval Limit Values 17
 3.3.2 OBD/OBM Limiting Values for Motor Vehicles with Spark
 Ignition Engines Fueled by Gasoline and Liquid
 and Natural Gas .. 18
 3.3.3 Motor Vehicles with a Compression Ignition Motor in
 the EU .. 20
 3.4 Summary: Structure of Emission Limit Monitoring 23

Chapter 4 - International Comparisons 25
 4.1 Guidelines .. 25
 4.2 Comparison of the Limiting Values in Europe and in the
 United States .. 28
4.2.1 Type Approval Limiting Values for Light Commercial Vehicles ... 30
4.2.2 OBD III .. 30
4.2.3 Trends of OBM Applications in Heavy Commercial Vehicles .. 31
4.2.4 Retrofitting Older Vehicles with OBM Systems32
4.3 Summary: International Comparison .. 33

Chapter 5 - State of the Art for Measurement Techniques 35
5.1 Research and Development ... 36
5.1.1 High-Precision Measuring Devices .. 36
5.1.2 Highly Dynamic Multicomponent Gas Analyzers 38
5.1.3 Laser Remote Measuring Systems ... 38
5.2 Measurement Device at the Test Bench ... 40
5.2.1 NO\textsubscript{x} Measuring Technique with Chemo Luminescence ... 41
5.2.2 Flame Ionization Detector Technology for the Collection of the Unburned Hydrocarbons ... 41
5.2.3 Determination of CO and CO\textsubscript{2} with Infrared Spectrophotometers .. 41
5.2.4 Mobile Applications of Large Analyzers 41
5.2.5 Measurement of Ammonia at the Test Bench 41
5.3 On-Road Measurement Field Devices ... 42
5.4 Sensor Technology .. 44
5.5 Summary: Test Bench and Field Measuring Techniques 45

Chapter 6 - OBM System Construction 47
6.1 Gas Preparation System ... 47
6.2 Sampling Technology .. 48
6.3 Regenerative Filters ... 48
6.4 Readjustment Valve for the Zero Point Switching by Calibration ... 48
6.5 Exhaust Gas Cooler ... 49
6.6 Summary: Gas Preparation Chain .. 50
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>The Optical System</td>
<td>53</td>
</tr>
<tr>
<td>7.1</td>
<td>Principle of the Infrared Gas Absorption</td>
<td>53</td>
</tr>
<tr>
<td>7.2</td>
<td>Pyroelectric Technology with Infrared Gas Absorption</td>
<td>54</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Emitter Structure</td>
<td>55</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Detector Structure</td>
<td>56</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Optical Cell Structure</td>
<td>56</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Length of the Optical Cells</td>
<td>57</td>
</tr>
<tr>
<td>7.3</td>
<td>Summary: Optical Elements Structure</td>
<td>58</td>
</tr>
<tr>
<td>8</td>
<td>Electronic and Software System</td>
<td>61</td>
</tr>
<tr>
<td>8.1</td>
<td>Description of the Measurement Device</td>
<td>61</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Storage and Transfer of the Data</td>
<td>62</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Correction of the Signal and the Reference Curves</td>
<td>63</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Smoothing Measuring Signals</td>
<td>65</td>
</tr>
<tr>
<td>8.2</td>
<td>Summary: Hardware and Software Design</td>
<td>66</td>
</tr>
<tr>
<td>9</td>
<td>Applications with OBM Devices</td>
<td>69</td>
</tr>
<tr>
<td>9.1</td>
<td>Fast Measurement Device for Determinations Near the Engine</td>
<td>69</td>
</tr>
<tr>
<td>9.2</td>
<td>HC Analyzer for Low Concentrations</td>
<td>71</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Combined Systems</td>
<td>72</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Detection of Parameters by Means of Exterior Measuring Sensors</td>
<td>72</td>
</tr>
<tr>
<td>9.3</td>
<td>Contamination of OBM Systems in the Field</td>
<td>73</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Multireflection Optical Cells</td>
<td>75</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Two-Way Optical Cells</td>
<td>76</td>
</tr>
<tr>
<td>9.4</td>
<td>Summary: Applications with Onboard Measurement Technology</td>
<td>76</td>
</tr>
<tr>
<td>10</td>
<td>OBD/OBM System in Field Experiments</td>
<td>79</td>
</tr>
<tr>
<td>10.1</td>
<td>Measurement of Raw Unburned Concentration Between Engine and Catalyst</td>
<td>79</td>
</tr>
<tr>
<td>10.2</td>
<td>Cylinder-Specific Emissions</td>
<td>80</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Control of the Secondary Air Injection</td>
<td>82</td>
</tr>
</tbody>
</table>
Chapter 11 - Exhaust Gas Measurement at the Catalyst 87

11.1 The Oxidation Catalyst ... 87
 11.1.1 Light-Off Point .. 88
 11.1.2 Cold-Start Phase .. 88
 11.1.3 Monitoring the Aging of Catalysts 89
 11.1.4 Detection of Misfires ... 92

11.2 The Reduction Catalyst ... 93
 11.2.1 Reduction of NO Through Feeding of Urea 93
 11.2.2 Reduction of NO by Addition of Hydrocarbons 93

11.3 The Storage Catalyst ... 94

11.4 Control of the Exhaust Gas After Treatment (EGAT) in a
 Compression Ignition Engine ... 94
 11.4.1 Exhaust Gas Recycling (EGR) ... 94
 11.4.2 Regulated Reduction of Nitrogen Oxides
 by Denitrification .. 95

11.5 Using OBM Technology at a Roller Test Bench 96

11.6 Summary: Applications with OBM in Field Experiments 98

Chapter 12 - Ecological Driving ... 101

12.1 The Effect of an Ecological Style of Driving 101

12.2 Use of OBM in Driving Schools ... 101

12.3 Summary: Environmentally Friendly Driving 103

Chapter 13 - OBD/OBM for Future Fuels 105

13.1 Natural Gas as Fuel ... 105
 13.1.1 Fluctuation of Fuel Quality ... 105
 13.1.2 Determination of the HC Concentration in
 Exhaust Gas .. 105
 13.1.3 Cold Start of CNG-Propelled Engines 107

13.2 Alternative Fuels ... 107
 13.2.1 Characteristics of Synfuel, SunFuel, and Hydrogen 107
 13.2.2 New Fuels in Motor Vehicles ... 108

13.3 Summary: The Role of Future Fuels .. 108
Chapter 14 - Measurement of Emissions in Aviation111
14.1 Analyzing Emissions of an Auxiliary Engine113
14.1.1 Measuring Results...113
14.2 Summary: Aviation Applications114

Chapter 15 - Measurement of Emissions from a Ship's
Diesel Engines ...115
15.1 Legal Guidelines ...115
15.2 Comparison of Emissions of Shipping and Other Types of
Transportation ...117
15.3 Objective of the Experimental Work118
15.4 Experimental Setup at the Ship118
15.5 Evaluation of the Measurement Results119
15.6 Future Use of OBM Technology in Shipping120
15.7 Summary: OBM Applications in Shipping121

Chapter 16 - Environmental and Climate Protection123
16.1 Number of Vehicles..123
16.2 Tendencies in Fuel Consumption124
16.3 Trends in Cost ...125
16.4 Use of Renewable Fuel ..126
16.5 Environmental and Climate Protection127
16.6 Economic Benefits ..128
16.7 Summary: Aspects of Environmental and Climate Protection with
OBD/OBM ..129

Chapter 17 - Changing Social and Individual
Behavior Patterns ...131
17.1 Globalization Through Mobility131
17.2 Low-Cost Motor Vehicles with Intelligent Technology132
17.3 Climate Protection ..132
17.4 Summary: Analysis of Social Behavior133
Chapter 18 - Visions for Future Construction 135
 18.1 Technology .. 135
 18.2 Miniaturization of Future OBM Devices ... 135

Chapter 19 - Conversion of Field Monitoring Results to Test
Bench Conditions ... 137
 19.1 Artificial Neuronal Networks (ANNs) .. 137
 19.2 Phases of Observation .. 137
 19.3 Approximation with Iteration .. 138
 19.4 Summary: Future Visions ... 139

References ... 141
Index .. 151
About the Author ... 159
List of Figures

Figure 1. Architecture of modern motor vehicles ...1
Figure 2. Structure of the intelligent control of exhaust gas3
Figure 3. Approved promotional instruments for intelligent monitoring of exhaust gas in motor vehicles ..4
Figure 4. Classification of OBD and OBM technology in motor vehicles5
Figure 5. Installation of the OBM system in a motor vehicle10
Figure 6. Monitoring by the car manufacturer and owner of the motor vehicle ...13
Figure 7. Classification of type approval (TA) in the EU and in the United States ..14
Figure 8. Structure of the exhaust gas test ..14
Figure 9. New European driving cycle (NEDC) ...18
Figure 10. Comparison of technologies and dates of use for private automobiles with spark ignition engines ..25
Figure 11. Comparison of EU and U.S. emission-limiting values in TA and OBD ..27
Figure 12. Ratio of OBD to TA ..28
Figure 13. Approximate comparison of the limiting values of NO₃29
Figure 14. Approximate comparison of particle emissions29
Figure 15. Data transfer to a data center ..30
Figure 16. Trend of the NO₃ limiting values in heavy commercial vehicles ..31
Figure 17. Trends in emission of particles in heavy commercial vehicles ..31
Figure 18. Trends in electronic defects in road vehicles32
Figure 19. Classification of measurement techniques according to the purpose of use ..35
Figure 20. Example of a high-precision measuring device for research and development ..37
Figure 21. Principle of measurement of the laser remote system39
Figure 22. Test bench for heavy-duty vehicles ...40
Figure 23. Schematic diagram of the IR gas analyzer42
Figure 24. Mobile test bench with conventional analyzers43
Figure 55. Measurement, storage, and evaluation of internal and external vehicle data ...72
Figure 56. Contaminated gas cooler ...73
Figure 57. Contaminated window of the emitter73
Figure 58. Manually handled crude filters74
Figure 59. Automatically handled fine filter74
Figure 60. Soot loading of a ceramic filter tube after combustion75
Figure 61. Small multireflection optical cells with mirror walls76
Figure 62. Two-way optical cells with head-off module77
Figure 63. Miniaturized OBM system with single components for HC analysis ...77
Figure 64. Applications with the OBD/OBM system79
Figure 65. Engine elements of high influence at raw exhaust gas concentration ...79
Figure 66. Raw exhaust gas concentration of a spark ignition engine upstream of the catalyst ...80
Figure 67. Picture of gas-sampling points near the engine81
Figure 68. Individual cylinder HC concentrations at the motor test bench of a spark ignition engine ...81
Figure 69. HC concentration at a cylinder of a spark ignition engine82
Figure 70. Variable secondary air injection with an HC sensor83
Figure 71. Test setup with external sensors in the engine compartment84
Figure 72. Installation of an OBM system in a light-duty vehicle84
Figure 73. Exploded view of an applied OBM system85
Figure 74. Measurement results of driving experiments at short distances ...85
Figure 75. Measurement results of driving experiments86
Figure 76. FTP 75 driving cycle with a Euro 2 motor vehicle88
Figure 77. FTP 75 driving cycle with an LEV motor vehicle89
Figure 78. Monitoring of the conversion ability of the catalyst91
Figure 79. Most important parameters of the oxidation catalyst in the automatically regulated cold-start phase91
Figure 80. Unburned hydrocarbon peaks in the propulsion phase without combustion misfires in a spark ignition engine92
Figure 81. NO reduction procedure with hydrocarbons ...94
Figure 82. Cooling of adsorption container of a storage catalyst ..95
Figure 83. Proportion of emissions depending on load ...95
Figure 84. A mechanism of exhaust gas recycling (EGR) to the engine96
Figure 85. Setup of a controlled dosage system as a retrofit construction97
Figure 86. CVS measurement technique on the roller test bench98
Figure 87. Hydrocarbon concentrations in NEDC at the roller test bench99
Figure 88. NO concentrations in NEDC at the roller test bench99
Figure 89. Comparison of trained and untrained driving behavior101
Figure 90. A video record of the day’s driving over measurement curves102
Figure 91. Comparison of relaxed and aggressive driving on CO emissions102
Figure 92. Measurement of a cold-start phase in a natural-gas-powered motor vehicle106
Figure 93. New kinds of fuels for motor vehicles ...108
Figure 94. Emissions of a conventional and a synthetic-fuel-propelled compression ignition engine ...109
Figure 95. Output of pollutants into the atmosphere ...111
Figure 96. Emissions at airports ...112
Figure 97. Emissions of engine type CF6-80 ..112
Figure 98. Measurement of emissions of an auxiliary jet engine at the test bench113
Figure 99. Values of energy, CO₂, and air pollution from inland vessels, railways, and trucks ..117
Figure 100. Measurement setup on a supply ship at port ..118
Figure 101. Measurement of emissions from ships ...119
Figure 102. Measuring emission results analyzed on a supply ship idling in the harbor120
Figure 103. Data transfer to a center ..121
Figure 104. Proportion of each sector’s CO₂ emissions in the EU123
Figure 105. Transportation’s share of world oil consumption ..124
Figure 106. Consumption rates of different fuels ...124
Figure 107. Discrepancy between oil production and new discoveries125
Figure 108. Change of oil price in Germany from 1990 to 2006................. 125
Figure 109. Consumption of energy and fuel through 2100 126
Figure 110. Retail costs of different fuel types.. 127
Figure 111. Educational measures in road transport................................ 128
Figure 112. Influence of fuel consumption and emission saving methods on
the environment... 129
Figure 113. Possibilities for the reduction of damage from climate
change in Europe.. 132
Figure 114. Pump and cooler module in a plate module.............................. 136
Figure 115. Connection of the pump and cooler module with the valve
module for the switch of gas and airflow... 136
Figure 116. Calculation of CO₂ concentration... 138
List of Tables

Table 1. Development of OBD and OBM Technology in Legislation8
Table 2. Comparison of OBD II and EOBD ..9
Table 3. Essential Content of Directive 98/69/EC9
Table 4. Systemization of Test Methods ...15
Table 5. Classification of Motor Vehicles in the European Union Related to the Permissible Total Mass ...15
Table 6. Implementation Dates for the OBD Requirements in the EU17
Table 7. Limiting Values of the European OBD for Spark Ignition Engines Running on Gasoline and Liquid and Natural Gas19
Table 8. Limiting Values of the European OBD/OBM for Light- and Medium-Weight Motor Vehicles with a Compression Ignition Motor ...22
Table 9. OBD/OBM Limiting Values for Heavy Commercial Motor Vehicles with Euro VI ..23
Table 10. Comparison of the Euro Norms EU 5 and EU 6 for Exhaust Gas Pollutants ..26
Table 11. Main Applications of Measuring Devices36
Table 12. Properties of Air and Gaseous Substances in Air36
Table 13. Technical Data of the Electronic Master Board61
Table 14. Applications of Catalysts with Different Engine Technologies87
Table 15. Deactivation Mechanisms for Catalysts90
Table 16. Influence of Recycled Exhaust Gas ..96
Table 17. Production of Future Fuels ...107
Table 18. Emissions in Different Phases of Flight112
Table 19. Number of Registered Motor Vehicles on the World’s Continents (January 1, 2010) ...123
Table 20. Possibilities for Reducing Emissions in Transport127
Table 21. Transportation Tasks in a Global Society131
Table 22. Scenarios for the Growth of Worldwide Mobility Through 2050 ..133
Table 23. Correlation Coefficient of Air Mass Flow with Different Input Parameters ...138
Preface

The first edition of this book was published in Germany by Expert Verlag in 2008. Since that time, the increase in technical intelligence in transportation has been an unstoppable process. In the last three years, government regulations regarding driving characteristics and combustion and exhaust-gas-treatment technologies have greatly expanded. Current requirements can only be fulfilled with the assistance of intelligent, onboard, microcontroller, microsensor, and microactuator systems.

In recent years, in addition to systems that measure engine and motor vehicle data, other subsystems for sustainability have been developed, such as remote sensing and data transfer technology. Complex traffic control systems also assume the existence of onboard intelligence.

The trends in many other sectors of sustainability resemble those in the area of transport. A U-turn to sustainable transportation with regard to fuel consumption is still a long way off. Meanwhile, increasing consumption of fuels eventually led to a multiplicity of complex problems, such as accelerated environmental and climate change. European Union legislation, specifically the EU 5 and EU 6 norms and the requirements for portable emission-measuring systems, support the direct monitoring of emissions.

This book describes technologies such as onboard diagnostics (OBD) and onboard measurement (OBM) and explains some of the applications that use these solutions. Combined OBD/OBM technology can optimize field-monitoring methods, inspection and maintenance measures, and exhaust-gas testing procedures. The benefits of combined OBD/OBM technology are not confined to its practical application but can also contribute to the use of sustainable driving behavior.

In shipping, development trends are similar to those in the field of heavy commercial vehicles. Data transfer to a center for sustainable shipping can contribute to the ecological design of harbor taxes.

In aviation, intelligent microsensors can help to lower the fuel consumption of aircraft engines. In areas surrounding airports, emission data serve to enable the introduction of the ecological design of airport taxes in the future, similar to sustainable harbor taxes.

It is hoped that this book will be used to stimulate further discussion for anyone who is interested in the fields of technology, sustainability, legislation, environmental and climate protection, and social and economic justice.

Lüneburg, winter 2011

Dr. Wolfgang Ruck
Abbreviations and Definitions

AAC Alaska Marine Vessel Visible Emission Standard
ABT averaging banking and trading
ANN artificial neuronal network
Bin the limiting value rate in the U.S. EPA
BSO Lake Constance Shipping Ordinance
 (BSO = Bodenseeschifffahrtsordnung)
BTL biomass-to-liquid
CAEP Committee on Aviation Environmental Protection
CAN-Bus controller area network-bus
CLD chemo luminescence detection
CNG compressed natural gas
CRT continuously regenerating trap
CVS constant volume sampling
DA durability
DeNO$_X$ denitrification system
DTC detection trouble codes
DTR distronic
EC European Commission
ECE Economic Commission for Europe
ECU engine control unit
EGAT exhaust gas after treatment
EGR exhaust gas recirculation
EOBD European On-Board Diagnostics
EPA U.S. Environmental Protection Agency
ESC European stationary cycle
EU 4 European exhaust gas standard
EUDC extra urban driving cycle
FID flame ionization detector
FM field monitoring
FTP federal test procedure
GHG greenhouse gas
GPS Global Positioning System
GSM Global System for Mobile Communications
GST generic scan tool
GTL gas-to-liquid
GVW gross vehicle weight
HDV heavy-duty vehicle
ICAO International Civil Aviation Organization
IMO International Maritime Organization
IPC industrial personal computer
IPCC International Panel for Climate Change
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>IUC</td>
<td>in-use compliance</td>
</tr>
<tr>
<td>IUMPR</td>
<td>in-use monitor performance ratio</td>
</tr>
<tr>
<td>IUPR</td>
<td>in-use performance ratio</td>
</tr>
<tr>
<td>LCD</td>
<td>liquid crystal display</td>
</tr>
<tr>
<td>LEV</td>
<td>low-emission vehicle</td>
</tr>
<tr>
<td>LIDAR</td>
<td>light detection and ranging</td>
</tr>
<tr>
<td>LPG</td>
<td>liquefied petroleum gas</td>
</tr>
<tr>
<td>MC</td>
<td>microcontroller</td>
</tr>
<tr>
<td>MEPC</td>
<td>Maritime Environment Protection Committee</td>
</tr>
<tr>
<td>MFF</td>
<td>main function failure</td>
</tr>
<tr>
<td>MIL</td>
<td>malfunction indicator light</td>
</tr>
<tr>
<td>NDIR</td>
<td>nondispersive infrared radiation</td>
</tr>
<tr>
<td>NEDC</td>
<td>new European driving cycle</td>
</tr>
<tr>
<td>OBD</td>
<td>onboard diagnostics</td>
</tr>
<tr>
<td>OBM</td>
<td>onboard measurement</td>
</tr>
<tr>
<td>ORM</td>
<td>on-road measurement</td>
</tr>
<tr>
<td>PEMS</td>
<td>portable emission measurement system</td>
</tr>
<tr>
<td>RTC</td>
<td>real-time clock</td>
</tr>
<tr>
<td>SAE International</td>
<td>formerly, the Society of Automotive Engineers</td>
</tr>
<tr>
<td>SCR</td>
<td>selective catalytic reduction</td>
</tr>
<tr>
<td>TA</td>
<td>type approval</td>
</tr>
<tr>
<td>Tier 1</td>
<td>U.S. regulation of exhaust gases</td>
</tr>
<tr>
<td>VOEM</td>
<td>vehicle on-road-emission and energy measurement system</td>
</tr>
<tr>
<td>WHTC</td>
<td>worldwide heavy-duty transient cycle</td>
</tr>
<tr>
<td>WWH-OBD</td>
<td>worldwide harmonized onboard diagnostic</td>
</tr>
</tbody>
</table>