Heavy-Duty Wheeled Vehicles
Other SAE books of interest:

Advanced Hybrid Powertrains for Commercial Vehicles
By Haoran Hu, Rudy Smaling, and Simon Baseley
(Product Code: R-396)

Motor Truck Engineering Handbook, Fourth Edition
By James Fitch
(Product Code: R-125)

Riding on Air—A History of Air Suspension
By Jack Gieck
(Product Code: R-235)
Heavy-Duty Wheeled Vehicles: Design, Theory, Calculations

By Boris N. Belousov and Sergei D. Popov
Dedication

In memory of
Professors P.V. Aksyonov, N.F. Bocharov, G.A. Smirnov, and Yu.V. Pirkovsky
Table of Contents

Preface .. xi
Acknowledgments ... xiii
Symbols used ... xxi
Enterprises and institutions .. xxiii

PART I EVOLUTION OF HEAVY-DUTY WHEELED VEHICLES

Chapter 1 History of HDWVs ... 3
1.1 General design-layout solutions ... 3
1.2 Hydromechanical transmissions (HMT) .. 13
1.3 Electric transmissions (ETs) .. 17
1.4 Hydrostatic transmissions (HSTs) ... 22
1.5 Steering systems ... 34

Chapter 2 Multi-support vehicles ... 37
2.1 Overview ... 37
2.2 Transmission ... 42
2.3 Supports .. 43
2.4 Steering system .. 47

Chapter 3 Heavy- and super-heavy-duty dumpers 53
3.1 Overview ... 53
3.2 Transmission ... 58
3.3 Undercarriage ... 65
3.4 Steering system .. 68
3.5 Brake system .. 70
3.6 Cabin .. 72
3.7 Dumpers made by MoAZ ... 72

Chapter 4 Evolution of the multi-axle chassis 75
4.1 History and evolution of the multi-axle chassis for monocargoes 75
4.2 Hovercrafts ... 80
4.3 General design and layout solutions ... 86
4.4 Designs of special wheeled chassis in the 1980s 87
PART II OVERVIEW OF HDWVS

Chapter 5 HDWV general design methods .. 99
5.1 General provisions ... 99
5.2 Hierarchical structure of SWC as a complex technical system 103
5.3 Process of forming the appearance of SWCs 112
5.4 Structure of a HDWV mathematical model 129
5.5 HDWV appearance formation algorithm 131
5.6 Characteristics of the “Formation of HDWV Appearance” project stage 133

Chapter 6 Conditions and areas for using HDWVs 135
6.1 Techno-economic feasibility for using HDWVs for cargo hauling 135
6.2 Conditions for using HDWVs .. 138
6.3 Basic requirements for traffic routes .. 143

Chapter 7 Basic requirements for HDWV consumer properties 149
7.1 General provisions .. 149
7.2 Traction-speed properties and fuel efficiency 150
7.3 Weight and dimensions .. 154
7.4 Maneuverability, ease of steering, and road passing ability 157
7.5 Safety .. 159
7.6 Ergonomics ... 166

Chapter 8 Main technical criteria and efficiency evaluation of HDWV solutions .. 173
8.1 Analysis of technical criteria of vehicle excellence 173
8.2 Methods for assessing vehicle designs ... 183
8.3 Mathematical model of the SWC’s representative route 186
8.4 Mathematical model of the SWC’s motion 197
8.5 Comparing SWC mobility on different routes 206

PART III FUNDAMENTALS OF HDWV THEORY AND DESIGN

Chapter 9 Basic principles of HDWV general layout 213
9.1 Trends in overall layout .. 213
9.2 Fundamentals of modular designing .. 227
9.3 Theory for building HDWV families ... 233
9.4 Future transport-and-process wheeled vehicle 238
9.5 Weight equations of a multi-wheel vehicle and its elements 244
9.6 Calculating the weight of wheeled vehicles 255
Chapter 10 Power units of wheeled vehicles267
10.1 General characterization of power units ...267
10.2 Engine development trends ...269
10.3 Fundamentals of HDWV engine designs ...272
10.4 Features of mathematical modeling a diesel engine and gas-turbine power plants for HDWVs282
10.5 State of things with electrochemical engines286

Chapter 11 Fundamental theory and calculation of power transmission from engine to wheeled mover 291
11.1 General overview, classification, and requirements for transmissions ..291
11.2 Trends in designs of mechanical transmissions ..306
11.3 Brakes-retarders of transmission type ..317
11.4 Main principles of power distribution in transmissions of modern and future HDWVs319
11.5 Optimization of the power transfer to the wheeled mover323
11.6 Promising electric transmissions ...340

Chapter 12 Oscillations in a multi-axle wheeled chassis with resilient tires ..351
12.1 Characteristics of vertical- and longitudinal-angular oscillations351
12.2 Characteristics of lateral-angular oscillations ...367
12.3 Frequency characteristics of oscillation velocities369
12.4 Frequency characteristics of oscillation accelerations370
12.5 Spectral analysis of oscillations ..372
12.6 Spatial models of oscillations ..376
12.7 Spatial model of oscillations in a multi-axle saddle road train385

Chapter 13 Fundamental theory and design of springing systems in HDWV wheels ...391
13.1 Function, classification, and requirements for wheel suspensions391
13.2 Analysis and calculation process of wheel suspensions394
13.3 Active and regulated suspensions and platform stabilization systems401
13.4 Choice of damping and rigidity parameters for long-stroke suspensions411
13.5 Designing long-stroke wheel suspensions for support-running modules (SRM)421
13.6 Analysis of the results of experimental trials on HDWV hydropneumatic suspensions425
13.7 Designing and calculating suspensions ..429

Chapter 14 Curvilinear motion of multi-axle wheel chassis441
14.1 Terms and definitions ...441
14.2 Equations of plane curvilinear motion in multi-link wheeled chassis446
14.3 Motion stability of multi-axle wheeled chassis462
14.4 Steady motion stability in multi-axle wheeled chassis475
14.5 Steady motion stability in a multi-axle wheeled chassis480
14.6 Non-stationary motion stability in a multi-axle wheeled chassis485
Chapter 15 Fundamental theory and design of HDWV steering systems

15.1 General provisions .. 487
15.2 Basic requirements for steering systems .. 490
15.3 Initial data for StS calculation .. 491
15.4 Selection and mathematical justification of functionality of flexible StS............... 496
15.5 Study of turning ability, maneuverability, and motion of HDWVs with different StSs 501
15.6 General design of automated control systems for curvilinear motion 513
15.7 All-wheel steering system for a 12×12 HDWV ... 526

References .. 537

Index ... 543

About the Authors ... 553
Preface

This book narrates the history of heavy-duty wheeled vehicles (HDVs) and presents the basics of the design, theory, and calculation of their individual units and systems; as well as the peculiarities of common design solutions used.

HDVs are all-wheel-drive vehicles that have a load capacity of 25 tons or more and three or more axles. Such vehicles are used for transporting heavy, indivisible, bulky cargos and as transport platforms for various technical equipment.

HDV designs have their own development requirements, which are associated with high loads, huge dimensions, and specific operation conditions. Naturally, the approaches to designing such vehicles differ from those used in designing other multipurpose all-wheel-drive automobiles. Designers and manufacturers of HDVs use a custom approach, such as designing a chassis for a particular purpose requested by the customer. The main elements of the chassis, namely, the undercarriage, the carrying system, the transmission type and composition, the engine, and resilient elements of the wheel suspension are flexible and vary. Other design variables include the number of axles and which are the driving and driven ones, and what size and type of tire are needed. Due to the individual character of the design process, design solutions are often different than those used to design passenger cars. Therefore, every positive and negative aspect of designing an HDV deserves a thorough study for future use in designing new vehicles.

An enormous contribution into the theory and practice of designing HDVs was made by Professors N.F. Bocharov and G.A. Smirnov of the N.E. Bauman MSTU and Professors P.V. Aksyonov and Yu.V. Pirkovsky, who closely cooperated with MSTU. This book presents certain elements of updated theory, calculations, and related general design solutions. The concept of general design solutions, introduced by Professor Aksyonov, comprises of the number and location of axles, steering and transmission system layout, and general vehicle layout principles.

The authors hope that this book will be helpful for the engineers, technicians, and scientists involved in the motor industry; for those engaged in designing and building wheeled transportation vehicles; and for students and trainees at universities where specialists of respective branches of industry are trained.

The authors will be grateful for any critical remarks and wishes expressed by the readers.
Acknowledgments

The authors gratefully acknowledge the following reviewers:

G.I. Gladov

S.B. Shukhman