Automotive Software Engineering

Principles, Processes, Methods, and Tools

Second Edition
Other SAE books of interest:

Vehicle Multiplex Communication
By Christopher A. Lupini
(Product Code: R-340)

Automotive E/E Reliability
By John Day
(Product Code: T-126)

Automotive Software
By Ronald K. Jurgen
(Product Code: PT-127)

Automotive Telematics
By Axel Fuchs
(Product Code: T-105)

Electronic Control Systems
By Ross Bannatyne
(Product Code: T-107)

For more information or to order a book, contact
SAE International at
400 Commonwealth Drive,
Warrendale, PA 15096-0001, USA;
Phone: 1+877.606.7323 (U.S. and Canada only)
or 1+724.776.4970 (outside U.S. and Canada);
Fax: 1+724.776.0790;
Email: CustomerService@sae.org
Website: http://books.sae.org
Automotive Software Engineering
Principles, Processes, Methods, and Tools
Second Edition

By Jörg Schäuffele and Thomas Zurawka
Translated by Roger Carey

Warrendale, Pennsylvania, USA
Contents

Foreword: The Role of Software in the Automobile xi

Preface to the Second English Edition xiii

Acknowledgments .. xv

Chapter 1: Introduction and Overview 1
 1.1 The Driver-Vehicle-Environment System 2
 1.1.1 Design and Method of Operation of Vehicle Electronic Systems ... 3
 1.1.2 Electronic Systems of the Vehicle and the Environment 5
 1.2 Overview of Vehicle Electronic Systems 6
 1.2.1 Electronic Systems of the Powertrain 9
 1.2.2 Electronic Systems of the Chassis 11
 1.2.3 Body Electronics ... 13
 1.2.4 Multimedia Systems ... 15
 1.2.5 Distributed and Networked Electronic Systems 15
 1.2.6 Summary and Outlook 16
 1.3 Overview of the Logical System Architecture 17
 1.3.1 ECU and Function Networks of the Vehicle 18
 1.3.2 Logical System Architecture for Open-Loop/Closed-Loop Control and Monitoring Systems 18
 1.4 Processes in Vehicle Development 19
 1.4.1 Overview of Vehicle Development 19
 1.4.2 Overview of the Development of Electronic Systems 20
 1.4.3 Core Process for Electronic Systems and Software Development ... 24
 1.4.4 Support Processes for Electronic Systems and Software Development ... 26
 1.4.5 Production and Service of Electronic Systems and Software .. 28
 1.5 Methods and Tools for the Development of Software for Electronic Systems ... 28
 1.5.1 Model-Based Development 29
 1.5.2 Integrated Quality Management 31
 1.5.3 Reducing the Development Risk 32
 1.5.4 Standardization and Automation 34
 1.5.5 Development Steps in the Vehicle 37
Contents

Chapter 2: Essential System Basics ... 39
 2.1 Open-Loop and Closed-Loop Control Systems 40
 2.1.1 Modeling ... 40
 2.1.2 Block Diagrams ... 40
 2.2 Discrete Systems .. 45
 2.2.1 Time-Discrete Systems and Signals 46
 2.2.2 Value-Discrete Systems and Signals 47
 2.2.3 Time- and Value-Discrete Systems and Signals 48
 2.2.4 State Machines .. 48
 2.3 Embedded Systems.. 50
 2.3.1 Microcontroller Construction 52
 2.3.2 Memory Technologies 53
 2.3.3 Microcontroller Programming 56
 2.4 Real-Time Systems ... 63
 2.4.1 Defining Tasks .. 64
 2.4.2 Defining Real-Time Requirements 65
 2.4.3 Task States .. 68
 2.4.4 Strategies for Processor Scheduling 69
 2.4.5 Organization of Real-Time Operating Systems 74
 2.4.6 Interaction Among Tasks 75
 2.5 Distributed and Networked Systems 81
 2.5.1 Logical and Technical System Architecture 84
 2.5.2 Defining Logical Communication Links 85
 2.5.3 Defining the Technical Network Topology 88
 2.5.4 Defining Messages 89
 2.5.5 Organization of Communication and Network Management .. 91
 2.5.6 Strategies for Bus Arbitration 94
 2.6 System Reliability, Safety, Monitoring, and Diagnostics 96
 2.6.1 Basic Terms ... 97
 2.6.2 System Reliability and Availability 98
 2.6.3 System Safety .. 103
 2.6.4 System Monitoring and Diagnostics 106
 2.6.5 Organization of a Monitoring System for Electronic Control Units .. 111
 2.6.6 Organization of a Diagnostic System for Electronic Control Units .. 114
 2.7 Electrics/Electronics and Software Architecture 119

Chapter 3: Support Processes for Electronic Systems and Software Development ... 123
 3.1 Basic Definitions of System Theory 124
 3.2 Process Models and Standards 127
3.3 Configuration Management .. 129
 3.3.1 Product and Life Cycle 129
 3.3.2 Variants and Scalability 130
 3.3.3 Versions and Configurations 131
3.4 Project Management .. 133
 3.4.1 Project Planning .. 135
 3.4.2 Project Tracking and Risk Management 140
3.5 Subcontractor/Supplier Management 141
 3.5.1 System and Component Responsibilities 141
 3.5.2 Interfaces for Specification and Integration 142
 3.5.3 Defining the Cross-Corporation Development Process ... 142
3.6 Requirements Management 143
 3.6.1 Mining, Recording, and Interpreting User Requirements .. 144
 3.6.2 Tracking User Requirements 149
3.7 Quality Assurance ... 150
 3.7.1 Integration and Testing Procedures 150
 3.7.2 Software Quality Assurance Methods 151

Chapter 4: Core Process for Electronic Systems and Software Engineering ... 153
 4.1 Requirements and Prerequisites 155
 4.1.1 Shared System and Component Responsibilities 155
 4.1.2 Coordination of Systems Engineering and Software Engineering 155
 4.1.3 Model-Based Software Development 157
 4.2 Basic Definitions and Notations 158
 4.2.1 Processes, Process Steps, and Artifacts 158
 4.2.2 Methods and Tools 159
 4.3 Specification of Logical System Architecture 160
 4.4 Specification of Technical System Architecture 163
 4.4.1 Analysis and Specification of Open-Loop/Closed-Loop Control Systems 167
 4.4.2 Analysis and Specification of Real-Time Systems 168
 4.4.3 Analysis and Specification of Distributed and Networked Systems 169
 4.4.4 Analysis and Specification of Reliable and Safe Systems 169
 4.5 Specification of Software Architecture 170
 4.5.1 Specification of Software Components and Associated Interfaces 171
 4.5.2 Specification of Software Layers 174
 4.5.3 Specification of Operating States 174
 4.6 Specification of Software Components 177
 4.6.1 Specification of Data Model 177
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6.2 Specification of Behavioral Model</td>
<td>178</td>
</tr>
<tr>
<td>4.6.3 Specification of Real-Time Model</td>
<td>180</td>
</tr>
<tr>
<td>4.7 Design and Implementation of Software Components</td>
<td>183</td>
</tr>
<tr>
<td>4.7.1 Consideration of Requested Nonfunctional Product Properties</td>
<td>184</td>
</tr>
<tr>
<td>4.7.2 Design and Implementation of Data Model</td>
<td>186</td>
</tr>
<tr>
<td>4.7.3 Design and Implementation of Behavioral Model</td>
<td>187</td>
</tr>
<tr>
<td>4.7.4 Design and Implementation of Real-Time Model</td>
<td>188</td>
</tr>
<tr>
<td>4.8 Software Component Testing</td>
<td>189</td>
</tr>
<tr>
<td>4.9 Integration of Software Components</td>
<td>189</td>
</tr>
<tr>
<td>4.9.1 Generating Program Version and Data Version</td>
<td>190</td>
</tr>
<tr>
<td>4.9.2 Generating Description Files</td>
<td>192</td>
</tr>
<tr>
<td>4.9.3 Generating Documentation</td>
<td>192</td>
</tr>
<tr>
<td>4.10 Software Integration Testing</td>
<td>193</td>
</tr>
<tr>
<td>4.11 Integration of System Components</td>
<td>194</td>
</tr>
<tr>
<td>4.11.1 Integration of Software and Hardware</td>
<td>195</td>
</tr>
<tr>
<td>4.11.2 Integration of ECUs, Setpoint Generators, Sensors, and Actuators</td>
<td>196</td>
</tr>
<tr>
<td>4.12 System Integration Test</td>
<td>198</td>
</tr>
<tr>
<td>4.13 Calibration</td>
<td>200</td>
</tr>
<tr>
<td>4.14 System and Acceptance Test</td>
<td>201</td>
</tr>
</tbody>
</table>

Chapter 5: Methods and Tools for Development 203

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Offboard Interface Between Electronic Control Units and Tools</td>
<td>205</td>
</tr>
<tr>
<td>5.2 Analysis of Logical System Architecture and Specification of Technical System Architecture</td>
<td>206</td>
</tr>
<tr>
<td>5.2.1 Analysis and Specification of Open-Loop and Closed-Loop Control Systems</td>
<td>207</td>
</tr>
<tr>
<td>5.2.2 Analysis and Specification of Real-Time Systems</td>
<td>211</td>
</tr>
<tr>
<td>5.2.3 Analysis and Specification of Distributed and Networked Systems</td>
<td>217</td>
</tr>
<tr>
<td>5.2.4 Analysis and Specification of Reliable and Safe Systems</td>
<td>222</td>
</tr>
<tr>
<td>5.3 Specification and Validation of Software Functions</td>
<td>230</td>
</tr>
<tr>
<td>5.3.1 Specification of Software Architecture and Software Components</td>
<td>232</td>
</tr>
<tr>
<td>5.3.2 Specification of Data Model</td>
<td>237</td>
</tr>
<tr>
<td>5.3.3 Specification of Behavioral Model Using Block Diagrams</td>
<td>237</td>
</tr>
<tr>
<td>5.3.4 Specification of Behavioral Model Using Decision Tables</td>
<td>240</td>
</tr>
<tr>
<td>5.3.5 Specification of Behavioral Model Using State Machines</td>
<td>242</td>
</tr>
<tr>
<td>5.3.6 Specification of Behavioral Model Using High-Level Languages</td>
<td>247</td>
</tr>
<tr>
<td>5.3.7 Specification of Real-Time Model</td>
<td>249</td>
</tr>
</tbody>
</table>
5.3.8 Validating the Specification Through Simulation and Rapid Prototyping .. 249
5.4 Design and Implementation of Software Functions 259
 5.4.1 Consideration of Requested Nonfunctional Product Properties ... 259
 5.4.2 Design and Implementation of Algorithms for Fixed-Point and Floating-Point Arithmetic268
 5.4.3 Design and Implementation of Software Architecture 286
 5.4.4 Design and Implementation of Data Model 290
 5.4.5 Design and Implementation of Behavioral Model 294
5.5 Integration and Testing of Software Functions 297
 5.5.1 Software-in-the-Loop Simulations 298
 5.5.2 Laboratory Vehicles and Test Benches 299
 5.5.3 Experimental, Prototype, and Production Vehicles 306
 5.5.4 Design and Automation of Experiments 307
5.6 Calibration of Software Functions 308
 5.6.1 Offline and Online Calibration Procedures 310
 5.6.2 Software Update Through Flash Programming 312
 5.6.3 Synchronous Measuring of Microcontroller and Instrumentation Signals 313
 5.6.4 Downloading and Evaluating Onboard Diagnostic Data 314
 5.6.5 Offline Calibration of Parameters 314
 5.6.6 Online Calibration of Parameters 315
 5.6.7 Classification of Offboard Interfaces for Online Calibration ... 316
 5.6.8 CAL-RAM Management 322
 5.6.9 Parameter and Data Version Management 325
 5.6.10 Design and Automation of Experiments 326

Chapter 6: Methods and Tools for Production and Service .. 327

 6.1 Offboard Diagnostics ... 328
 6.2 Parameterization of Software Functions 329
 6.3 Software Update Through Flash Programming 331
 6.3.1 Erasing and Programming Flash Memory 332
 6.3.2 Flash Programming Through the Offboard Diagnostic Interface .. 332
 6.3.3 Security Requirements .. 334
 6.3.4 Availability Requirements 336
 6.3.5 Boot Block Shifting and Flash Programming 337
 6.4 Startup and Testing of Electronic Systems 338