Integrated Vehicle Health Management:
Implementation and Lessons Learned
Other SAE books of interest:

Integrated Vehicle Health Management: Perspectives on an Emerging Field
Edited By Ian K. Jennions
(Product Code: R-405)

Integrated Vehicle Health Management: Business Case Theory and Practice
Edited By Ian K. Jennions
(Product Code: R-414)

Integrated Vehicle Health Management: The Technology
Edited By Ian K. Jennions
(Product Code: R-429)

Integrated Vehicle Health Management: Essential Reading
Edited By Ian K. Jennions
(Product Code: PT-162)

For more information or to order a book, contact SAE International at
400 Commonwealth Drive, Warrendale, PA 15096-0001, USA;
phone 877-606-7323 (U.S. and Canada only) or 724-776-4970 (outside U.S. and Canada);
fax 724-776-0790;
email CustomerService@sae.org;
Integrated Vehicle Health Management: Implementation and Lessons Learned

Edited by Ian K. Jennions

“SAE order number R-438”--Title page verso.

Summary: “SAE International formed an IVHM (Integrated Vehicle Health Management) Steering Group in the fall of 2010. The idea reflected the large number of groups, within SAE’s organization, that deal with health management of systems or subsystems (but without the integrated, holistic view of the vehicle asset or fleet). The newly formed group, through the IVHM HM-1 technical group, proceeded to organize an IVHM technical track for the SAE AeroTech meeting in Toulouse in October 2011 and also had the idea for a book on IVHM that could be handed out to participants to promote engagement in this exciting new field. The book: Integrated Vehicle Health Management: Perspectives on an Emerging Field [Jennions 2011] was the result and, surprisingly, it spawned a trilogy of books, of which this is the fourth! This current book, the fourth and (maybe) last in the series, covers the broad area of implementation and lessons learned. It endeavours to draw upon the experience that has been gained by fielding the technologies that have been discussed through the first three books. By its very nature, the insight in fielding these technologies comes not only from the aerospace sector but from a number of other interesting and challenging areas. As such, this book has sought out authors from sectors such as computer forensics and biotech, as well as rail. It is also important that some of the lessons to be learned are not purely technical but involve human factors and issues such as trust in data and IVHM systems, issues that will also be covered here. It is hoped that through books such as this, time and cost can be taken out of the implementation of new systems and IVHM can realize its true value in the marketplace”--Provided by publisher.

TL285.I4863 2015

629.28--dc23

2014025545
Table of Contents

Acknowledgments .. xv

Chapter 1 Introduction .. 1
Ian K. Jennions, IVHM Centre, Cranfield University
 1.1 Background ... 2
 1.2 Book Structure ... 3
 1.3 References ... 4

Chapter 2 Human Factors 5
Mervyn Floyd and Ravi Rajamani, Meggitt PLC
 2.1 Introduction ... 6
 2.2 In the Beginning… ... 6
 2.3 What Are Human Factors? ... 7
 2.4 How Do Humans Deal with Information? 8
 2.5 Effects of Human Factors on System Concepts and Intended Use ... 8
 2.6 Human Interaction with the System and Surrounding
 Use Environment .. 10
 2.7 Solutions? .. 11
 2.8 References .. 12

Chapter 3 Trust... 15
Charlie Dibsdale, Optimized Systems and Solutions (OSyS)
David Webster, University of Leeds
 3.1 Why Is Trust Important in IVHM? 16
 3.1.1 An Illustration of Irrational Aspects of Trust and Quality 17
 3.1.2 Lessons Learned from EHM System Failures 17
 3.2 What Is Trust in an IVHM Context? 18
 3.2.1 Enhancing the Ability to Act 19
 3.3 The STRAPP Project ... 19
 3.3.1 The Hypothesis of Trust 20
 3.3.2 Architectural Lessons Learned 20
 3.3.2.1 The Existing EHM System 20
 3.3.2.2 EHM Design and Architecture 21
 3.3.2.3 Agnosticism of the STRAPP System 22
Table of Contents

3.3.2.4 The Treatment of Risk in the STRAPP Trust Service 24
3.3.2.5 The Treatment of Personalization in the STRAPP
 Trust Service .. 27
3.4 What Does Provenance Look Like? 28
3.5 Conclusions .. 30
3.6 References .. 30

Chapter 4 Looking After Planes, Trains, Clean Energy, and Human
 Health: 23 Important Lessons I’ve Learned the Hard Way 33
 Michael J. Provost, Intelligent Energy Ltd.
 4.1 Introduction .. 34
 4.2 The Lessons .. 34
 4.3 Examples and Stories .. 39
 4.4 Conclusions .. 41
 4.5 Acknowledgments .. 41
 4.6 References .. 42

Chapter 5 IVHM Systems—The Road to Innovation 45
 Joao Pedro Pinheiro Malere, Embraer
 5.1 Overview .. 46
 5.2 The Ahead-Pro System ... 46
 5.3 IVHM Technology Development 47
 5.4 Important Aspects and Lessons Learned 51
 5.4.1 Technology Development Process 51
 5.4.2 Development Characteristics 51
 5.4.3 Customer Engagement 53
 5.4.4 Funding .. 53
 5.4.5 Continuous Monitoring of New IVHM Developments Globally .. 53
 5.4.6 Project Management .. 54
 5.4.7 Intellectual Property .. 54
 5.4.8 Organizational ... 55
 5.4.9 Technology Transfer .. 55
 5.4.10 Incorporating Lessons Learned 55
 5.5 Conclusion ... 56
 5.6 References .. 56
Chapter 6 Lessons Learned in Developing and Implementing APU Health Management .. 59
Rhonda Walthall, UTC Aerospace Systems

6.1 Introduction .. 60
6.2 The Need for APU Health Management 60
6.3 Implementation Challenges .. 60
 6.3.1 Onboard Implementation Challenges 61
 6.3.1.1 Certification .. 61
 6.3.1.2 Sensors .. 61
 6.3.2 Offboard Implementation Challenges 62
6.4 Lessons Learned During Implementation 63
 6.4.1 APU Health Management—1st Implementation 63
 6.4.1.1 Combustion Chamber Failure 65
 6.4.2 APU Health Management—2nd Implementation 66
6.5 Making the Business Case ... 68
6.6 Changing the Culture ... 69
6.7 References ... 70

Chapter 7 IVHM Automated APU In-Flight Start Program 71
Emre Civan, Turkish Airlines
Murat Yukselen, Turkish Technic

7.1 Introduction .. 72
7.2 Regulatory Requirements .. 72
7.3 Brief Overview of the AHM Automated APU In-Flight Start Program .. 73
7.4 Lessons Learned: Planning Manually 74
7.5 Implementation: IVHM Modeling of the Process through Boeing’s AHM ... 74
7.6 Performance Metrics ... 76
7.7 Conclusions ... 76
7.8 References ... 77

Chapter 8 The RASSC Project ... 79
Sean Barker, BAE Systems

8.1 Project Goals .. 80
8.2 Structural Health Monitoring .. 81
8.3 SHM as a Service ... 82
8.4 Contractual and Legal Relationships 84
8.5 Repository Characteristics ... 85
Chapter 9 Computer Forensics: Challenges to Evidential Integrity 91
Ian Mitchell and Sukhvinder Hara, Middlesex University

Chapter 10 Reproducible Biotechnology: Playing Catch-Up in Mass-Manufacturing 101
David Jennions, Axxam SpA
Chapter 11 Rotorcraft HUMS: Lessons Learned From
a Historical Perspective .. 111
Michael J. Augustin, IVHM Inc.

11.1 Introduction .. 112
11.2 The V-22 Osprey CIC/VSLED—The First IVHM System? 112
11.2.1 A Few Lessons Learned from CIC/VSLED’s Implementation ... 113
11.3 The North Sea FDR/HUMS Developments 114
11.3.1 A Few of the Lessons Learned from the North Sea
HUMS Developments .. 115
11.4 Helicopter OEM Branded Systems 116
11.4.1 Lessons Learned from Rotorcraft OEM HUMS Developments . 119
11.5 The U.S. Federal Aviation Administration. 121
11.5.1 Lessons Learned .. 121
11.6 HUMS/CBM in the Military ... 122
11.6.1 Lessons Learned .. 122
11.7 Current Research and Recent Developments 123
11.8 Ongoing Sources of Technical Data Covering All Aspects of
Rotorcraft HUMS .. 124
11.9 References .. 125

Chapter 12 Implementation of THUMS and CBM in the
Israeli Air Force—Lessons Learned 129
Jacob Bortman, Ben Gurion University

12.1 Background .. 130
12.2 The Beginning of the Story in the Israeli Air Force—The
“Start-Up” Vision ... 130
12.3 The First Full-Scale Program—The Apache THUMS 130
12.3.1 THUMS Architecture 131
12.3.2 Data Flow .. 132
12.3.3 Flight Regime Recognition 133
12.3.4 The Apache THUMS Performance 135
12.3.5 Success Stories ... 136
12.3.6 Diagnostic Events .. 136
12.4 Condition-Based Maintenance 139
12.5 Lessons Learned .. 140
12.6 The New Vision ... 141
12.6.1 Improved Modeling Capabilities 141
12.6.2 Improved Sensing Capabilities 141
12.6.3 Improved Prognostic Tools 141
12.6.4 Data Mining .. 142
Table of Contents

12.7 Summary .. 142
12.8 Acknowledgments .. 142
12.9 References .. 142

Chapter 13 Short History of IVHM in Honeywell 143
Dinkar Mylaraswamy, Honeywell International, Inc.

13.1 Overview .. 144
13.2 Example Products and Solutions 144
13.2.1 Health and Usage Monitoring System 144
13.2.2 Process Equipment Monitoring 146
13.2.3 Onboard Maintenance Systems 147
13.2.4 Performance Trend Monitoring 149
13.3 Closing Remarks .. 150
13.4 References .. 152

Chapter 14 Insights on IVHM Implementation at Airbus 153
F. Kramer, A. Lafon, F. Martinez, and C. Veron, Airbus

14.1 Introduction ... 154
14.2 Airborne Segment .. 154
14.2.1 Assessing Health Status in Early Airbus Years—A300/A310 ... 154
14.2.1.1 Assessing Operational Impact 154
14.2.1.2 Assessing System and Equipment Health Status by the Ground Crew .. 154
14.2.1.3 Assessing Aircraft Performance—Trend Monitoring ... 154
14.2.2 First-Generation Centralized Ground Crew Maintenance Systems (A320 to A330/340) 154
14.2.2.1 Early Centralized Fault Display System 154
14.2.2.2 Aircraft Condition Monitoring System 155
14.2.3 Extended Centralized Maintenance System and Approaching Seamless Workflow (A380 and A350XWB) 156
14.2.3.1 Managing More Data and Time-Limited Failures 156
14.2.3.2 Addressing Next Dispatch 156
14.2.3.3 Improving Workflow for Maintainer 157
14.2.3.4 Increasing Air/Ground Connectivity 158
14.2.4 Challenging Design and Verification 158
14.3 Ground Segment ... 159
14.3.1 Historical Perspectives .. 160
14.3.1.1 Early Beginnings ... 160
14.3.1.2 From Storage to Support 160
14.3.2 Current Product Implementation ... 161
 14.3.2.1 IT Implementation .. 161
 14.3.2.2 Functional Capabilities .. 161
 14.3.2.3 Users Targeted .. 163
14.4 Perspectives .. 163
 14.4.1 From Unplanned to Predictive Maintenance 163
 14.4.2 From Scheduled to Condition-Based Maintenance 164
 14.4.3 From Manual/Semi-Automated to Automated Processes 164
 14.4.4 From Local On-Aircraft Maintenance to Remote Maintenance .. 164

Chapter 15 Aircraft Health and Trend Monitoring: IVHM Experiences
from the Gulfstream G650 Aircraft ... 165
Robert O’Dell, Gulfstream Aerospace Corporation

 15.1 An Introduction to G650 Aircraft Health and Trend Monitoring. 166
 15.2 AHTMS Overview ... 167
 15.3 System Functionality .. 167
 15.3.1 In-Air Functionality ... 167
 15.3.2 On-Ground Functionality .. 168
 15.4 Data Analysis and Ground Support Network 169
 15.5 Data Transmission .. 170
 15.5.1 Priority 1 Data .. 171
 15.5.2 Priority 2 Data .. 172
 15.5.3 Priority 3 Data .. 172
 15.5.4 Priority 4 Data .. 172
 15.6 AHTMS in Service ... 172
 15.6.1 High-Priority CAS Event Over the Pacific 173
 15.6.2 Flight Control Issue on Ground 173
 15.6.3 Landing Gear Maintenance Messages 173
 15.6.4 Fuel Fluctuation ... 173
 15.7 Summary and Conclusions .. 173

Chapter 16 The Road to Vehicle Health Management 177
Dashiel Kolbe, GE Aviation

 16.1 GE Aviation’s Vehicle and Health Management History 178
 16.2 Data Acquisition and Recorders .. 178
 16.3 Rotorcraft IVHM ... 179
 16.4 Aircraft Health Management Systems 181
 16.5 Future Perspectives and Lessons Learned 183
 16.6 References ... 184
Table of Contents

Chapter 17 Summary and Conclusion .. 185
Ian K. Jennions, IVHM Centre, Cranfield University, UK

17.1 Human Factors .. 186
17.2 Trust .. 187
17.3 HUMS .. 187
17.4 Fielded Systems .. 188
17.5 Conclusion .. 189

Index ... 191

About the Authors .. 197
Acknowledgments

SAE International is pleased to present its fourth title in the series of Integrated Vehicle Health Management (IVHM), this time introducing a variety of case studies, lessons learned, and insights on what it really means to develop, implement, or manage an integrated system of systems.

Integrated Vehicle Health Management: Implementation and Lessons Learned brings to the reader a wide set of hands-on stories, made possible by the contribution of twenty-three authors, who agreed to share their experience and eventual wisdom on how new technologies are developed and put to work.

This effort was again coordinated by Dr. Ian K. Jennions, Director of the IVHM Centre at Cranfield University (UK).

Here are the authors listed in alphabetical order. Their biographies and pictures can be found at the end of this book:

- Andre Lafon, Airbus
- Charles E. Dibsdale, Optimized Systems and Solutions (OSyS)
- Christine Veron, Airbus
- David K. Jennions, Axxam SpA
- David Webster, University of Leeds
- Dashiell Kolbe, GE Aviation
- Dinkar Mylaraswamy, Honeywell International Inc.
- Emre Civan, Turkish Airlines
- Frank Kramer, Airbus
- Frederic Martinez, Airbus
- Ian K. Jennions, Cranfield University
- Ian Mitchell, Middlesex University
- Jacob Bortman, Ben Gurion University
- Joao Pedro Pinheiro Malere, Embraer
- Mervyn Floyd, Meggitt PLC
- Michael J. Augustin, IVHM Inc.
- Michael J. Provost, Intelligent Energy Ltd.
- Murat Yukselen, Turkish Airlines
- Ravi Rajamani, Meggitt PLC
- Rhonda Walthall, UTC Aerospace Systems
- Robert O’Dell, Gulfstream Aerospace Corporation
- Sean Barker, BAE Systems
- Sukhvinder Hara, Middlesex University
Acknowledgments

Yet, the quality of the final product couldn't be guaranteed without the prompt and candid input from very busy reviewers, who took the time and lent their expertise in making this book as accurate and clear as it could be.

To them, our recognition and gratitude:

- Ian K. Jennions, Cranfield University
- David Kinney, The Boeing Company
- Peter Smout, Aero Engine Controls
- Bruno Leao, GE Global Research Brazil
- Steve King, Rolls-Royce
- Assaad Krichene, iGATE Technologies
- Antony Waldock, BAE Systems
- Chris Pomfret, Treble One LLC
- Lucas Campos Puttini, Bombardier
- Ravi Rajamani, Meggitt LLC
- Jacek Stecki, PHM Technology P/L
- Seth Kessler, Metis Design
- David Followell, The Boeing Company
- Michael McCullough, BAE Systems Land and Armaments
- Keith Jackson, Meggitt PLC
- Ian Campbell, Meggitt PLC
- Richard Greaves, Meggitt PLC
- Peter Foote, Cranfield University
- Steve Parker, Meggitt PLC
- Len Losik, Failure Analysis
- Raj Bharadwaj, Honeywell International Inc.
- Mervyn Floyd, Meggitt LLC
- Neil Eklund, GE Global Research
- Abhinav Saxeena, SGT Inc., NASA Ames Research Center
- Chip Queitsch, FAA
- Tim Wilmering, The Boeing Co.
- Ginger Shao, Honeywell International Inc.
- Matt Greaves, Cranfield University

SAE International will continue to publish the new developments in the area of Integrated Vehicle Health Management as they become available.

Our goal and hope is that this contribution will make such a unique body of knowledge ever more useful to those interested in it.

SAE International