Wireless Charging Technology and the Future of Electric Transportation
Other SAE books of interest:

Unwinding Electric Motors: Strategic Perspectives and Insights for Automotive Powertrain Applications
By Timothy George Thoppil
(Product Code: JPF-P3-003)

Advanced Hybrid Powertrains for Commercial Vehicles
By Haoran Hu, Simon Baseley, and Rudolf M. Smaling
(Product Code: R-396)

Automotive 2030 – North America
By Bruce Morey
(Product Code: T-127)

For more information or to order a book, contact
SAE International
400 Commonwealth Drive
Warrendale, PA

phone +1.877.606.7323 (U.S. and Canada only)
or +1.724.776.4970 (outside U.S. and Canada);
fax +1.724.776.0790;
e-mail CustomerService@sae.org;
website: books.sae.org.
Wireless Charging Technology and the Future of Electric Transportation

Lead Author: In-Soo Suh (Professor, Korea Advanced Institute of Science and Technology)

Co-Authors:
Dong-Ho Cho (Professor, Korea Advanced Institute of Science and Technology)
Jorg Franke (Professor, FAU Erlangen-Nuremberg)
Soon-Man Hong (Invited Professor, Korea Advanced Institute of Science and Technology)
Sung-Kwan Jung (Research Associate Professor, Korea Advanced Institute of Science and Technology)
Byung-Song Lee (Korea Railway Research Institute)
John M. Miller (Retired, Oak Ridge National Laboratory)
Florian Risch (Research Assistant, FAU Erlangen-Nuremberg)
Naoki Shinohara (Professor, Kyoto University)
Faical Turki (Dipl.-Ing., Paul Vahle GmbH & Co. KG)
Nikola Tesla’s Wardenclyffe Tower experiment in Long Island in the early 1900s, the transmittance of electricity from a source to an electric device without a wire or cord has been pursued for more than a century. While current automotive industry is focused on developing static wireless charging of electric vehicles for plug-in hybrid or electric vehicles with the delivering capacity below 7 kW ranges, a few prototype technologies are demonstrated with dynamic wireless charging capabilities with more than several 10 kW ranges. One example described in this book is the historic public launch of a people mover vehicle in Seoul Grand Park, Korea, with dynamic wireless charging capability, which was led by Dr. In-Sooh, the principal editor of this book. Around the world, the major automakers are developing their strategies for conductive and wireless charging technologies, with concerted efforts to establish technical standards on wireless electric vehicle charging, mainly focused on the safety considerations and interoperability—"Provided by publisher.

Information contained in this work has been obtained by SAE International from sources believed to be reliable. However, neither SAE International nor its authors guarantee the accuracy or completeness of any information published herein and neither SAE International nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published with the understanding that SAE International and its authors are supplying information, but are not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought.
Table of Contents

Foreword ... xi

Acknowledgments ... xiii

Chapter 1: Introduction ... 1
 1.1 Introduction to Wireless Power Transfer Technology 1
 1.2 Wireless Power Transfer in Transportation 11
 1.3 Micro Mobility and Wireless Power Transfer 14
 1.4 Structure of the Book ... 18
 References ... 19

Chapter 2: Green Transportation and Electric Vehicles 21
 2.1 Future Automotive Power Drive Trend 21
 2.2 Intelligent Transportation System 29
 2.3 Electric Vehicle Charging Systems 33
 2.4 WPT Application to EV .. 37
 2.5 Implications of Wireless Charging in Future Transportation 41
 References ... 44

Chapter 3: EV Charging Technology: Conductive and Wireless 47
 3.1 Conductive Charging ... 47
 3.2 Wireless Charging .. 50
 3.3 Commercial WPT Technologies 55
 3.4 Rollout of Wireless Charging 56
 References ... 60

Chapter 4: An Overview of OLEV Technology 61
 4.1 Background .. 61
 4.2 SMFIR Technology .. 62
 4.3 Overall System .. 63
 4.4 Design of Power Supply Infrastructure 65
 4.5 Design of Power Collection Systems 68
 4.6 Application of SMFIR Technology to Bus 70
 4.7 Application of SMFIR Technology to Trains 75
 References ... 76
Chapter 9: Long-Distance Power Transfer .. 167
 9.1 Introduction .. 167
 9.2 History of Long-Distance Power Transfer 168
 9.3 Theory of Long-Distance Power Transfer 171
 9.4 Recent Applications of Long-Distance Power Transfer 174
 9.5 Conclusions ... 180
 References .. 180

Chapter 10: Industrial Applications of WPT 183
 10.1 System Overview ... 184
 10.2 Crane Applications .. 187
 10.3 Automated Guided Vehicles .. 188
 10.4 Skillet Conveyor ... 188
 10.5 Transfer Car .. 189
 10.6 Electric Monorail System ... 190
 10.7 Sorter Technology ... 191
 10.8 Clean-Room Technology .. 192
 10.9 Elevator Systems .. 194
 References .. 194

Concluding Remarks ... 197

Index ... 199

About the Authors ... 205
 Dong-Ho Cho ... 205
 Jorg Franke ... 205
 Soon-Man Hong .. 206
 Sung-Kwan Jung ... 206
 Byung-Song Lee .. 207
 John M. Miller ... 207
 Florian Risch ... 207
 Naoki Shinohara ... 208
 In-Soo Suh ... 208
 Faical Turki ... 209
Foreword

In January 2011, I edited the SAE Publication, Green Technologies and the Mobility Industry. It addressed the new “green paradigm,” which considers the environment as a vital aspect of doing business. The environment and climate change, the price of oil and its security, and economic concerns are all challenges facing regional and global economies. Advances in electric vehicle development are a great example of how the mobility industry is responding with technological solutions that are less polluting, more sustainable, and efficient in the long run. Dr. In-Soo Suh and his colleagues in this publication, Wireless Charging Technology and the Future of Electric Transportation, continue this theme and advance the case for electrification as a mobility solution.

Although no industry can ever turn its back to cost efficiencies, the equation now also includes the monetary and nonmonetary price of environmental damage, the lasting impact of the carbon footprint, and the value of being socially responsible. Around the world, governments are increasingly regulating and restricting greenhouse gas (GHG) emissions, and incentivizing the creation and use of nonpolluting technologies.

Over the next decade or so, industry forecasts show increased growth in production of electric vehicles in Asia, despite the low penetration rates thus far. Most analysts are conservative showing penetration rates under 5%, but some of the industry predictions actually foresee up to 15% market share by 2025. More vehicle development programs will continue to take place.

Around the world, the major automakers are developing their strategies for conductive and wireless charging technologies, with concerted efforts to establish technical standards on wireless electric vehicle charging, mainly focused on the safety considerations and interoperability. The operating frequency allocation and electromagnetic field exposure to the human body, in addition to existing electrical safety requirements, have been significant issues for technical standard communities.

While the current automotive industry is focused on developing static wireless charging for plug-in hybrid or electric vehicles, delivering capacity below the 7 kW range, a few prototype technologies have demonstrated dynamic wireless charging capabilities with ranges over 10 kW. One example described in this book is the public launch of a people mover vehicle in Seoul Grand Park, Korea, which was led by Dr. In-Soo Suh.

Wireless Charging Technology and the Future of Electric Transportation covers the current status of wireless power transfer (WPT) technology and its potential applications to future road and rail transportation systems. It is a reference and provides an in-depth analysis of the most important areas of interest in this new field, including the following topics:

- Working principles of wireless power transfer technology
- Current technology and its projected future impact on electric vehicles
• Comparison between conductive and wireless charging of electric vehicles
• Introduction to dynamic wireless charging systems
• Technological challenges and international technical standards activities
• Applications in consumer electronics, rail, aviation, marine, and off-road transportation
• Long-distance electrical energy transfer

By providing status on recent research and development, it is an invaluable aid to readers, young engineers, researchers, and others seeking advanced knowledge on these subjects.

Andrew Brown, Jr., PhD, PE, FESD, FSAE, NAE
Vice President & Chief Technologist (retired)
Delphi Automotive
2010 SAE President
Acknowledgments

As the lead author of this book, I sincerely appreciate the acceptance to my invitation and contributions from the authors. Dr. John Miller, recently retired from ORNL, has been a great teacher and reviewer of this book with valuable feedback and comments. I appreciate the contribution from Professor J. Franke and Dr. Risch from FAU Erlangen-Nuremberg, Germany, who are leading the International Electric Drives Production Conference. I would also like to thank Professor Naoki Shinohara, Kyoto University, Japan, for his enthusiasm and never-ending curiosity and for encouraging me to continue this publication. Dr. Turki from Vahle, Germany, contributed commercialization perspective on WPT application. I also appreciate the valuable contributions of my colleagues at KAIST, Professor D. H. Cho and Research Professor S. Jung. I thank Dr. S. Hong, who recently stepped down from the presidential position of Korean Railway Research Institute (KRRI), for his contribution to the railway application of WPT. Importantly, I deeply appreciate all the members of KAIST OLEV Project from 2009, as we have undergone many challenges together.

Special thanks go out to Dr. Andrew Brown for kind encouragement and thorough feedback through the review process. During the editing process, my PhD student, J. Kim, provided great assistance, and Ms. Monica Nogueira of SAE International provided continuous advice and helpful revisions throughout the drafting process.

In-Soo Suh, PhD, Lead Author
Associate Professor, Graduate School for Green Transportation, KAIST
Associate Editor of IEEE ITS Magazine
Research Planner of Korean National Research Foundation